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Abstract

Some physical parameters, that are positive by definition, appear often as recip-
rocal pairs, like an electrical resistivity ρ and the electrical conductivity σ = 1/ρ ,
or a frequency ν and the period T = 1/ν . Theoretical arguments suggest that
behind these pairs there are more natural parameters: their logarithms. This paper
suggests a terminology that could bring those logarithmic units into normal use. Al-
though perturbing long-term established habitudes, the defined logarithmic units,
if adopted, could simplify measuring practices: if the instruments were manufac-
tured using these units, changes of scales (say from Ω to kΩ and to MΩ when
measuring an electric resistence) would be suppressed, and the simpler algebra of
absolute uncertainties would replace that of relative uncertainties in most measure-
ments. The suppression of the arbitrary accumulation near the zero value when
not using the logaritmic units (for instance, near the frequency zero in one case or
near the period zero in the reciprocal case), may be important conceptually. As an
example of use of the logarithmic units one may consider the tuning of a musical
instrument where a new, slightly modified musical scale can be defined. The oddly
defined decibel unit can be clarified using the proposed definitions.

1 Introduction

There is plenty of parameters that are positive by definition and that appear as pairs of
reciprocal parameters. Some examples are:

• An electrical resistivity ρ and the electrical conductivity σ = 1/ρ ;

• A frequency ν and the period T = 1/ν ;

• A rate of exchange of money, like when using the USD/FF ratio in France or the
reciprocal FF/USD ratio in the US.

These parameters have been often analyzed, in particular with respect to information
theory. For instance, Jeffreys (1) and Jaynes (2) argue that the state of total ignorance
about the possible value of such a parameter can not be described by a constant probability
density. The argument goes as follows.
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Consider, for instance, an electric resistivity ρ , or the associated electric conductivity
σ = 1/ρ . To any probability density f(ρ) over ρ will be associated an equivalent
probability density g(σ) over σ . Well known rules of change of variables give

g(σ) =

∣∣∣∣∣dρ

dσ

∣∣∣∣∣ f(ρ) =
1

σ2
f(ρ) =

1

σ2
f(

1

σ
) . (1)

The probability density f(ρ) = const. can not describe the state of total ignorance on
the possible values of an electric conductivity, as it would imply, using equation 1, the
probability density g(σ) = const./σ2 over the possible values of the electric conductivity.
The probability densities f(ρ) and g(σ) would then have different form. But, to describe
the state of total ignorance, any argument that can be applied to ρ can be applied to
σ . Then, the two functions f(·) and g(·) have to be, in fact, identical. This constraint,
toguether with the constraint of equation 1 leads, up to a multiplicative constant, to the
unique solution

f(ρ) =
1

ρ
; g(σ) =

1

σ
. (2)

This (unnormalizable) probability density, does not allow to compute the absolute proba-
bility of an interval, which is natural if one considers that we do not have any information
on the possible values of the parameter.

The interpretation of equations 2 is better grasped if introducing logarithmic param-
eters. Defining, for instance,

ρ∗ = log
ρ

ρ0

; σ∗ = log
σ

σ0

, (3)

where ρ0 and σ0 are arbitrary constants, and using the well known rules of change of
variables leads to the new probability densities

f ∗(ρ∗) = const. ; g∗(σ∗) = const. (4)

This is telling us that although perfectly valid, the usual parameters resistivity-
conductivity, satisfying σ = 1/ρ , although perfectly valid, have a nontrivial behaviour,
as the total ignorance is not described by a non-constant probability density. Their log-
arithmic counterparts, ρ� and σ� , satisfying σ� = −ρ� , are simple parameters, for
which the total ignorance is described by constant probability densities. In some sense,
the parameters ρ and σ have a “nonlinear behaviour”, which is “ironed out” when
taking their logarithms.

Although not formalized, taking the logarithm of the kinds of parameters explored in
this paper is universal. Here are some examples.

1. Figures displaying a spectrum of a phenomenon (amplitude as a function of fre-
quency) use a “logarithmic axis” for the frequencies. This

(a) gives larger “dynamics” to the display and

(b) avoids collapsing information near the zero frequency when not using a logar-
itmic axis.
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2. Descriptions of processes near the begining of a Big Bang model of the Universe use
an exponential notation ( 10−27 s after the Big Bang. . . ). This is disguised way of
using a “logarithmic axis”.

3. The same is true when describing low temperatures: in the racecourse to the low
temperature record, we talk about 10−3 K , 10−4 K . . .

It is my feeling that the importance of the logarithmic parameters has not been em-
phasized enough. Although, most often, they are effectively introduced, they are not
recognized has having an independent existence. From where some common errors, as
the one of intuitively assuming that a constant probability density may describe the total
ignorance on a parameter like a frequency.

Only in engineering, though the introduction of the decibel measuring system, an effec-
tive introduction of logarithmic parameters is made. But its definition is odd, with factors
of two between different uses of the decibel concept. And, in any case, the decibel scale is
not aimed at measuring physical parameters, but rather to compare relative attenuations,
amplifications, etc.

The next section defines logarithmic parameters and suggests a uniform nomenclature.
The following sections explain some of the advantages of the explicit use of the new
parameters, both conceptual and practical, and give a couple of examples.

2 Definition of logarithmic units

2.1 The example frequency-period

Let us start with a particular example, and give later the general definition. Consider
that we have to measure the frequency ν of some phenomenon, or, correspondingly, its
period T = 1/ν .

The unit of frequency is the hertz (we will later recall its definition). This unit is
realised, for instance, by any pendulum having as period T = 1s . The electric power
supplied at homes realizes the frequency of 50 hz or 60 hz , depending on the countries.

The logarithmic frequency associated to a frequency ν must have the form

ν∗ = a logb

ν

ν0

, (5)

where ν0 is some fixed frequency. Obviously, the simplest definition will correspond to
the choice of natural logarithms (base b = e = 2.71828 . . . ) and to the choice a = 1 .
Then,

ν∗ = log
ν

ν0

, (6)

where “log” without any index means the natural logarithm (we will mention below the
use of different logarithm basis).

It remains to decide about the constant ν0 . That such a constant is necessary to the
definition is clear if we consider that the logarithm can only accept as argument a pure
number, without physical dimensions.

Logarithmic scales (as the decibel scale) are typically used for relative measurements.
For instance, when measuring the logarithmic amplitude of a sound one usually compares
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the pressure amplitude of a sound with the amplitude of a “normal conversation pressure
amplitude” (taken as 10−1 Pa). But is there any fundamental difference between a relative
and an absolute measurement? After all, an “absolute measurement” of a pressure is also
a comparison of a pressure value to a reference unit, the pascal or the bar.

Then, the logarithmic parameters defined here through an expression like 6 are in-
tended for a general use, absolute or relative measurements. In an absolute measurement,
as one compares the measured value to the unit (for instance, a hertz, a second, a pascal
or an ohm), the constant ν0 will be that unit (respectively 1 hz, 1 s, 1 Pa or 1 Ω). In
a relative measurement, one will compare the measured value to some reference value,
different from the legal unit (for instance, a “normal conversation pressure amplitude”
p0 = 10−1 Pa , the “musical middle A pitch”, ν0 = 440 hz ). The terminology to be
defined below will make clear which is the reference chosen for measurement.

What about the units for a logarithmic frequency? By definition, ν∗ , being the
logarithm of a pure number, is itself a pure number, having no physical dimensions. But
there is no reason for not giving a name to the unit of logarithmic frequency: an illustrious
example of physical unit with a name but without physical dimensions is the radian, used
to measure angles, and defined as the ratio between two lengths.

When making an absolute measure of a logarithmic frequency, using equation 6, we
take ν0 = 1 hz . I propose to call neperhertz the unit of (absolute) logarithmic frequency,
as reference to the natural, or Neperian, logarithms used in its definition. Then, for
instance, to the frequency ν = 1.23 104 hz we can now associate the logarithmic frequency
ν∗ = 9.42 neperhertz .

Note: mention somewhere that the International Standards Organization (ISO) con-
siders a decaying wave of form F (t) = A exp(−αt) cos(ωt) and, it gives to ωt the
name radian (rad), it gives to αt the name neper (Np). Then, while ω has physical
dimensions rad/s , α has dimensions Np/s . [ISO 31-2:1992].

Turning to the period T = 1/ν , we can introduce the logarithmic period

T ∗ = log
T

T0

. (7)

In an absolute measurement, T0 will be the unit of time duration T0 = 1 s . Calling
nepersecond the unit of logarithm time, we can associate to the period T = 1/ν =
8.13 10−5 s , the logarithmic period T � = −9.42 nepersecond .

Two obvious remarks. First, when choosing for the constant ν0 the hertz, we have
the simple rules

ν = α hertz ⇔ ν∗ = (log α) neperhertz ; ν� = β neperhertz ⇔ ν = eβ hetz (8)

and, when choosing for the constant T0 the second,

T = γ second ⇔ T ∗ = (log γ) nepersecond ; T � = δ nepersecond ⇔ T = eδ second .
(9)

Second, if the period T is the reciprocal of the period ν (i.e., if T = 1/ν ), then,
T ∗ = −ν∗ , i.e., using the adimensional units,

T � = ε nepersecond ⇔ ν� = −ε neperhertz . (10)
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Let us now turn to the terminology for relative measurements. When measuring, for
instance, a logarithmic pressure

p� = log
p

p0

, (11)

I have proposed, when p0 = 1 pascal , to use for p� the unit neperpascal. It is adi-
mensional and, in fact, it is just the number 1 (as the radian when measuring angles).
When taking for p0 the “normal conversation pressure amplitude” (ncpa) p0 = 10−1 Pa ,
to perform a relative measurement, I propose to use for p� the unit “neper-ncpa” (in
complete words, a “neper-normal-conversation-pressure-amplitude”).

Passing from this to the general case is obvious. In section 2.5 the link will be made
with the decibel scale of engineers.

Note: should I give here more properties for the relative logarithmic measurements?

2.2 General case

The principle just suggested can be extended to all other parameters of the type here con-
sidered (pairs of positive, reciprocal parameters, whose probability density representing
the state of total ignorance is of the form 1/x ). If a physical parameter has the value
r , and if r0 is the unit of this physical parameter, then, the logarithmic parameter is

r∗ = log
r

r0

(12)

and, for whatever the unit may be, if we say

r = α unit , (13)

then, we also say
r∗ = (log α) neperunit , (14)

or, reciprocally,
r∗ = β neperunit ⇔ r = eβ unit . (15)

Armed with this baggage, the reader should be able to understand a graphic like the
one in figure 1, or to understand this rephrasing of Stephen Hawking’s A Brief History of
Time: At (logarithmic) time T ∗ = -35 neperseconds, the quaks and antiquarks . . . at
time T ∗ = -12 neperseconds, the photons . . .

Note: bring Hawking’s book home.

2.3 Changing units

Note: mention somewhere how we can change units. Taking the example of a pressure,
we have

Pa = 105 bar . (16)

Assume that a logarihtmic pressure has the value p∗ = α neperpascal . The, as it is easy
to see,

p∗ = α neperpascal = (α + log 105) neperbar ≈ (α + 11.51) neperbar . (17)
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This shows that relative values of logarithmic parameters (difference between two values)
will be independent from the unit.

Note: mention somewhere that, when taking the reciprocal parameter (i.e., for in-
stance, from period to frequency) we have the equivalence:

T ∗ = α nepersecond ⇔ ν∗ = −α neperhertz . (18)

2.4 Using binary or decimal logarithms

The use of particular systems of numbering, base 2 in computers, base 10 in ordinary life,
make sometimes preferable the use of logarithms with basis other than e . We show in
this section that we can conciliate the need of defining logarithmic parameters using only
natural logarithms and the practical use of base 2 or bare 10 logarithms.

Let us take the example of a frequency, the generalization being obvious. As, for any
base a , log x = logax · log a , given the constant ν0 , the logarithmic frequency can be
written, for any logarithm basis,

ν� = log
ν

ν0

=
(
loga

ν

ν0

)
· log a . (19)

In particular,

ν� = log
ν

ν0

=
(
log2

ν

ν0

)
· log 2 =

(
log10

ν

ν0

)
· log 10 . (20)

We need now an important definition. We have seen that, in fact, a neperhertz is, like
a radian, just the number 1. Let us define the following numerical constants:

neperhertz = log e = 1
boolehertz = log 2 ≈ 0.693

belhertz = log 10 ≈ 2.30 . (21)

Then, equation 20 can be rewritten

ν� =
(
log

ν

ν0

)
neperhertz =

(
log2

ν

ν0

)
boolehertz =

(
log10

ν

ν0

)
belhertz . (22)

Thanks to the numerical constants introduced, a logarithmic parameter, defined using
exclusively using natural logarithms, can be practically computed using base 2 or base 10
logarithms.

As an example, we have considered, in section 2.1, a logarithmic frequency of ν∗ =
9.42 neperhertz . We can write ν∗ = 9.42 neperhertz = 13.6 boolehertz = 4.09 belhertz .

Note: say somewhere that the term “boole” comes, of course, from the algebra in base
2, and that the term “bel” is chosen in reference to the bel and decibel of engineers (I
will show below the equivalence).

We have the simple properties

ν∗ = α neperhertz ⇔ ν = eα hertz
ν∗ = β boolehertz ⇔ ν = 2β hertz

ν∗ = γ belhertz ⇔ ν = 10γ hertz . (23)
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While the booleunit indicates the power of two expressing the value of the original (non
logarithmic) parameter, the belunit indicates the power of ten.

For the sake of completeness, we can rewrite equation 23 as

ν = ε hertz ⇔ ν� = (log ε) neperhertz
⇔ ν� = (log2 ε) boolehertz
⇔ ν� = (log10 ε) belhertz . (24)

Note that the constants introduced in equation 21 can, equivalently, be defined by

neperhertz = log e = 1
boolehertz = (log 2) neperhertz ≈ 0.693 neperhertz

belhertz = (log 10) neperhertz ≈ 2.30 neperhertz . (25)

Note that while the parameter

ν∗ = log
ν

ν0

,

defined as a natural logarithm, gets the name of logarithmic frequency , the quantities

ν∗
2 = log2

ν

ν0

and
ν∗

10 = log10

ν

ν0

appearing in equation 22 do not receive a special name, as its direct use is proscribed.
Caution: for any a �= e ,

ν�
a = (log a) ν� �= ν� . (26)

2.5 The “decibel”

Note: this section has to be rewritten, as I have already introduced the relative measure-
ments above.

Let us consider a quasi-sinusoidal acoustic wave. Let p be the amplitude of the
pressure, and let i be its intensity (power per unit of surface). It is well known that they
are related by

i =
p2

2ρc
, (27)

where ρ is the volumetric mass of the medium and c the speed of the waves.
The logarithmic amplitude and intensity are

p� = log
p

p0

; i� = log
i

i0
, (28)

where for the constants p0 and i0 we can take the IS units ( Pa and W m−2 ), if the
we wish to have “absolute” measurements. We have

i� = log
i

i0
= log

(
p

p0

)2

= 2 log
p

p0

= 2 p� , (29)
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i.e., if we have
p� = α neperpascal , (30)

then,
i� = 2 α neper − (watt − per − squared − meter) . (31)

This factor of 2, although natural here, is at the center of some confusions when using
the decibel scale of eengineers (see below).

Going now to relative measurements, imagine that from the two pressure amplitudes
pA and pB (resp. from the two intensities iA and iB ) we have defined

i�A = log
iA
i0

; p�
A = log

pA

p0

; i�B = log
iB
i0

; p�
B = log

pB

p0

. (32)

The relative values ∆p� = p�
B − p�

A and ∆i� = i�B − i�A are easily seen to equal

∆p� = log
pB

pA

; ∆i� = log
iB
iA

. (33)

We have, as before,
∆i� = 2 ∆p� . (34)

It is important that ∆p� and ∆i� are independent on the original values of p0 and
i0 allowing the absolute mesurements. Therefore, I propose:

1. keeping, for these relative measurements, a notation with the ∆ , to avoid confusing
with absolute values;

2. as the relative values are independent of the units chosen, use the terminology “the
relative logarithmic pressure is ∆p� = α neperpressure” or “the relative logarithmic
intensity is ∆i� = β neperintensity”.

In addition to the neper, we, of course, also can introduce the boole and the bel as
in equation 25. Then, if in a relative measurement for an acoustic wave we have, for
instance,

∆p� = 7.0 neperpressure , or, equivalently, ∆i� = 14.0 neperintensity , (35)

using the bel instead of the neper gives (according to definition 25)

∆p� = 3.04 belpressure , or, equivalently, ∆i� = 6.08 belintensity , (36)

or, using the decibel instead of the bel,

∆p� = 30.4 decibelpressure , or, equivalently, ∆i� = 60.8 decibelintensity . (37)

This is exactly equivalent to the dB scale of engineers.
The clarification of this odd scale has required to use a ∆ notation, to add “pressure”,

“intensity” (or whatever other parameter), and, most importantly, to give, in fact, to the
“decibel” the numerical value 1

10
log 10 (see definitions 25).

Note: say somewhere that, sometimes, noise levels are measures with reference to some
“normal-conversation-pressure” (ncp) or the equivalent “normal-conversation-intensity”
(nci). The ncp is taken as 10−1Pa . It is then onvious what the “decibel-ncp” or the
“decibel-nci” can be.

With temperatures, one sometimes uses the “normal temperature” (nt). One then
could introduce, for instance, the nepper-nt.
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3 Analysis of uncertainties

Note: say here that the parameters considered in this paper lead, usually, to consider
the relative measurement uncertainties (they are almost independent of the measured
value). Note: explain better. These uncertainties are transformed into ordinary (absolute)
uncertainties for the logarithmic parameters. Note: explain better.

Note: say that the Gaussian model for measurement uncertainties can be used only
on the logarithmic parameter.

4 The manufacture of measuring instruments

Today, measurement apparatus are designed to measure parameters like electric resistences
or frequencies. I will claim now that these should be manufactured differently, in order
to deliver results expressing directly the logarithmic magnitudes.

Note: say here that an instrument made to measure the electric resistence of a con-
ducting wire today is made to give the results in dofferent “scales”, that may range, for
instance, from the milliohm, mΩ , to the megaohm, MΩ . If manufactured to indicate
the logarithmic resistence would indicate, if using decimal logarithms, values ranging from
-3 belohm to 6 belhom, or, using natural logarithms, from -7 neperohm to 14 neperohm.

Note: my intuition says that such instruments would ne easier to manufacture that
present day instruments. Check this.

Figure 2 suggests the behaviour of a “neper-ohm-meter”.
Note: I remember having seen, on my youth, analogical meters in the musical equip-

ments (measuring perhaps the output power) where the needle was indicating a value in
a logarithmic scale. This suggests that an equivalent digital measuring instrument would
be more simple to manufacture in indicating the logarithm parameter.

5 Music

I have stressed enough that a logarithmic frequency is a more “linear” parameter than a
frequency. This, is, of course, obvious for musicians, who, when passing from an octave
to the next, just double the frequencies of the sounds.

Disregarding here older scales (like the Pythagorean scale or the Zarlino one), the
tempered (?) scale of Werckmeister (1645–1706), popularized by Johann Sebastian Bach
(1685–1750), and the one widely used today, corresponds to a logarithmic progression of
the frequencies of the notes.

L. Euler (Testamen Novae Theoriae Musicae, ibid., 1974) suggested using logarithms
in base 12

√
2 ≈ 1.059463 to measure musical intervals (so the reader can imagine what I

would call an eulerhertz). In this scale, the succesive half-tones can be made to correspond
to the successive integers.

Without taking a so extreme view of things, the use of logarithms in base 2, gives a
sufficiently simple scheme. Figure 3 gives the frequencies and the logarithmic frequencies
for three octaves of the musical notes. For completeness, I give the logarithmic frequencies
in three units, the neperhertz, the boolehertz and the belhertz. The boolehertz unit is
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simpler in what the half-tone interval makes exactly 1/12 of boolehertz. Passing from one
octave to the next, increases the logarithmic frequency of one boolhertz.

This suggests the simplification of the musical scale shown in figure 4, where the pitch
of the UT 3 has been fixed at the exact value of 8 boolehertz (256 hertz). Then, all the
UT notes have pitches corresponding to the successive integers in the boolehertz scale,
i.e., to the succesive powers of 2 in the hertz scale. In this modified scale, the LA 3 has
its frequency shifted from the nominal 440 hz to 430.54 hz. This would give a numerical
basis for a general descent of the pitch that is desired, for pure musical reasons, by many
mucisians (note: give a recent reference here) (note: explain that a UNESCO commission
is presently studying this problem of definition of the nominal pitch for the scale).

6 More complex parameters

Note: Talk here about the Poisson’s ratio and the Hubble constant.

7 Conclusion

The original unit is the nonlinear one. The “logarithmic” unit is natural. And linear.
Note: try to make obvious that I am making more than using logarithmic scales.

I try to give life to the logarithmic parameters.
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8 Appendix

8.1 Exact values

1 neperunit = (log10 e) belunit =
1 belunit

log 10
= (log2 e) booleunit =

1 booleunit

log 2

1 booleunit = (log 2) neperunit =
1neperunit

log2 e
= (log10 2) belunit =

1belunit

log2 10

1 belunit = (log2 10) booleunit =
1 booleunit

log10 2
= (log 10) neperunit =

1 neperunit

log10 e
.

8.2 Numerical values

1 neperunit ≈ 0.434 belunit ≈ 1.44 booleunit
1 booleunit ≈ 0.693 neperunit ≈ 0.301 belunit

1 belunit ≈ 3.32 booleunit ≈ 2.30 neperunit . (38)
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-21.6 neperkelvin -21.5 neperkelvin -21.4 neperkelvin-21.7 neperkelvin

Figure 1: A small exercise of interpreation to check if the reader has assimilated the notion
of logarithmic temperature.
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MΩ

 Ω
kΩ

MΩ

 Ω
kΩ NpΩ

neper-ohm-meterohm-meter

NpΩ+1.2345673.436890

765.4321 +20.45595
Figure 2: Today, measuring instruments are manufactured so that one obtains ohms,
hertzs, pascals. . . As explained in the text, these parameters are not natural (the prob-
ability density representing the state of total ignorance on the value of the parameter
[to represent, for instance, the result of an infitely bad measurement] is not constant).
The logarithm of these parameters is the natural parameter to use. Then, the algebra
of analysis of uncertainties is simplified (absolute errors replace relative errors). I pro-
pose to directly manufacture measuring instruments using the logarithmic parameters.
One additional advantage of these instruments would be that, while the intrinsic ex-
ponential character of parameters like an electric resistence, a frequency, a pressure. . . ,
forces to make changes of scale (say, from the milli-ohm scale to the mega-ohm scale),
the natural parameters can accomodate any realistic value on the same scale (note that
log(10−40) = −92.1 and that log(10+40) = +92.1 ). Here, at left, a classical instrument
makes two measurements, using, at top the ohm scale and, at bottom, the megaohm scale.
At right, a logarithmic instrument has a single scale, measuring neperohms (defined as
R∗ = log(R/R0) , with R0 = 1Ω ). Probably, engineers will prefer base 10 logarithms.
Then, the belohm can be used, where 1 belohm ≈ 2.30 neperohm . The two readings at
right then would be R∗

1 = +0.536166 belohm and R∗
2 = +8.883907 belohm . As

explained in the text, these definitions reconcile the use of a “bel” or “decibel” scale with
the necessary generality and simplicity of physics.
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tone   frequency                             logarithmic frequency

C UT     1046.50 hz   6.9532..... neperhertz = ......59714 boolehertz = ........... belhertz
  SI      987.77 hz   6.8954..... neperhertz = ......26381 boolehertz = ........... belhertz
B LA#     932.33 hz   6.8377..... neperhertz = 9.864693047 boolehertz = 2.969568505 belhertz
A LA      880.00 hz   6.779921907 neperhertz = 9.781359714 boolehertz = 2.944482672 belhertz
  SOL#    830.61 hz   6.7222..... neperhertz = 9.698026381 boolehertz = 2.919396839 belhertz
G SOL     783.99 hz   6.6644..... neperhertz = 9.614693047 boolehertz = 2.894311006 belhertz
  FA#     739.99 hz   6.6066..... neperhertz = 9.531359714 boolehertz = 2.869225173 belhertz
F FA      698.46 hz   6.5489..... neperhertz = 9.448026381 boolehertz = 2.844139340 belhertz
E MI      659.26 hz   6.4911..... neperhertz = 9.364693047 boolehertz = 2.819053507 belhertz
  RE#     622.25 hz   6.4333..... neperhertz = 9.281359714 boolehertz = 2.793967674 belhertz
D RE      587.33 hz   6.3756..... neperhertz = 9.198026381 boolehertz = 2.768881841 belhertz
  UT#     554.37 hz   6.3178..... neperhertz = 9.114693047 boolehertz = 2.743796008 belhertz
C UT      523.25 hz   6.260061521 neperhertz = 9.031359714 boolehertz = 2.718710175 belhertz
  SI      493.88 hz   6.202299256 neperhertz = 8.948026381 boolehertz = 2.693624342 belhertz
B LA#     466.16 hz   6.1445..... neperhertz = 8.864693047 boolehertz = 2.668538509 belhertz
A LA      440.00 hz   6.086774727 neperhertz = 8.781359714 boolehertz = 2.643452676 belhertz
  SOL#    415.30 hz   6.0290..... neperhertz = 8.698026381 boolehertz = 2.618366844 belhertz
G SOL     392.00 hz   5.9713..... neperhertz = ......93047 boolehertz = ........... belhertz
  FA#     369.99 hz   5.9135..... neperhertz = ......59714 boolehertz = ........... belhertz
F FA      349.23 hz   5.8557..... neperhertz = ......26381 boolehertz = ........... belhertz
E MI      329.63 hz   5.7980..... neperhertz = ......93047 boolehertz = ........... belhertz
  RE#     311.13 hz   5.7402..... neperhertz = ......59714 boolehertz = ........... belhertz
D RE      293.66 hz   5.6824..... neperhertz = ......26381 boolehertz = ........... belhertz
  UT#     277.18 hz   5.6247..... neperhertz = ......93047 boolehertz = ........... belhertz
C UT      261.63 hz   5.5669..... neperhertz = ......59714 boolehertz = ........... belhertz
  SI      246.94 hz   5.5092..... neperhertz = ......26381 boolehertz = ........... belhertz
B LA#     233.08 hz   5.4514..... neperhertz = ......93047 boolehertz = ........... belhertz
A LA      220.00 hz   5.393627546 neperhertz = ......59714 boolehertz = ........... belhertz
  SOL#    207.65 hz   5.3359..... neperhertz = ......26381 boolehertz = ........... belhertz
G SOL     196.00 hz   5.2781..... neperhertz = ......93047 boolehertz = ........... belhertz
  FA#     185.00 hz   5.2203..... neperhertz = ......59714 boolehertz = ........... belhertz
F FA      174.61 hz   5.1626..... neperhertz = ......26381 boolehertz = ........... belhertz
E MI      164.81 hz   5.1048..... neperhertz = ......93047 boolehertz = ........... belhertz
  RE#     155.56 hz   5.0471..... neperhertz = ......59714 boolehertz = ........... belhertz
D RE      146.83 hz   4.9893..... neperhertz = ......26381 boolehertz = ........... belhertz
  UT#     138.59 hz   4.9315..... neperhertz = ......93047 boolehertz = ........... belhertz
C UT      130.81 hz   4.8738..... neperhertz = ......59714 boolehertz = ........... belhertz

half-tone interval = log_e(2)/12  neperhertz                   = 0.05776226505 neperhertz
                   = log_2(2)/12  boolehertz = 1/12 boolehertz = 0.08333333333 boolehertz
                   = log_10(2)/12 belhertz                     = 0.02508583297 belhertz

Figure 3: The tempered (?) scale of musical tones, expressed in frequencies and in
logarithmic frequencies, using the three more usual logarithmic scales, natural, binary,
and decimal logarithms.
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 tone     frequency  logarithmic frequency

C UT     1024    hz   10      boolehertz
  SI      966.53 hz    9.9166 boolehertz
B LA#     912.28 hz    9.8333 boolehertz
A LA      861.08 hz    9.75   boolehertz
  SOL#    812.75 hz    9.6666 boolehertz
G SOL     767.13 hz    9.5833 boolehertz
  FA#     724.08 hz    9.50   boolehertz
F FA      683.44 hz    9.4166 boolehertz
E MI      645.08 hz    9.3333 boolehertz
  RE#     608.87 hz    9.25   boolehertz
D RE      574.70 hz    9.1666 boolehertz
  UT#     542.45 hz    9.0833 boolehertz
C UT      512    hz    9      boolehertz
  SI      483.26 hz    8.9166 boolehertz
B LA#     456.14 hz    8.8333 boolehertz
A LA      430.54 hz    8.75   boolehertz
  SOL#    406.37 hz    8.6666 boolehertz
G SOL     383.57 hz    8.5833 boolehertz
  FA#     362.04 hz    8.5    boolehertz
F FA      341.72 hz    8.4166 boolehertz
E MI      322.54 hz    8.3333 boolehertz
  RE#     304.44 hz    8.25   boolehertz
D RE      287.35 hz    8.1666 boolehertz
  UT#     272.22 hz    8.0833 boolehertz
C UT      256    hz    8      boolehertz
  SI      241.63 hz    7.9166 boolehertz
B LA#     228.07 hz    7.8333 boolehertz
A LA      215.27 hz    7.75   boolehertz
  SOL#    203.19 hz    7.6666 boolehertz
G SOL     191.78 hz    7.5833 boolehertz
  FA#     181.02 hz    7.5    boolehertz
F FA      170.86 hz    7.4166 boolehertz
E MI      161.27 hz    7.3333 boolehertz
  RE#     152.22 hz    7.25   boolehertz
D RE      143.68 hz    7.1666 boolehertz
  UT#     135.61 hz    7.0833 boolehertz
C UT      128    hz    7      boolehertz

  half-tone interval = 1/12 boolehertz

Figure 4: A suggestion to modify the musical pitches, in order to simplify the pitch
mesurements. The pitch of the UT 3 has been fixed at the exact value of 8 boolehertz
(256 hertz). Then, all the UT notes have pitches corresponding to the successive integers
in the boolehertz scale, i.e., to the succesive powers of 2 in the hertz scale. In this modified
scale, the LA 3 has its frequency shifted from the nominal 440 hz to 430.54 hz. This would
give a numerical basis for a general descent of the pitch that is desired, for pure musical
reasons, by many mucisians (note: give a recent reference here) (note: explain that a
UNESCO commission is presently studying this problem of definition of the nominal
pitch for the scale).
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