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Curves and a Procedure for Its Correction

by N. M. Shapiro and S. K. Singh

Abstract A systematic error is known to occur in estimatin g surface-wave group-
velocity dispersion when the multiple filter analysis technique is applied. The error
comes from the fall-off of the amplitude spectra at long periods. We propose a
method for correcting this error. It consists of using a centroid frequency of the
filtered spectrum instead of the central frequency of the gaussian window. The
method is especially useful when the group-velocity curve is obtained from stacking
of individual frequency-time diagrams. We apply this technique to two data sets. The
first one consists of nine seismograms of coastal, subduction-zone earthquakes re-
corded by a broadband station located in Mexico City. This data set has been pre-
viously used to estimate an average crustal structure of southern Mexico. The second
data set consists of broadband seismograms recorded in India and has been used to
determine an average structure of the Indian peninsular region. Our results show that,
in the first case, the systematic error is negligible. This is due to the relatively low
decay rate of the spectral amplitudes at long periods. However, in the case of the
Indian data, the systematic error of the multiple filter analysis cannot be neglected
since it changes significantly the measured dispersion curves and leads to errors in
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the estimated crustal structure. Our tests show that the proposed method successfully
corrects a major part of the systematic error.

Introduction

Since its introduction by Dziewonski ef al. (1969), fre-
quency-time analysis has been widely used in seismology to
measure surface-wave group-velocity dispersion. Here, we
consider a version of this technique that is called multiple
filter analysis (Dziewonski er al,, 1969; Herrmann, 1987;
Levshin et al., 1989). It consists of the application of a set
of gaussian amplitude filters to the input spectrum, followed
by calculation of inverse Fourier transforms. The group ar-
rival times are then estimated from the maxima of the time
envelopes. It is known that this method leads to a systematic
error in the group-velocity measurements (Levshin er al,
1989). This error arises from the variation of the spectral
amplitude, which shifts the central frequency of the filtered
spectrum. As a consequence, the measured group velocity is
assigned to an incorrect frequency. One way to correct this
error is to replace the central frequency of the filter by an
instantaneous frequency (Levshin et al, 1989). This ap-
proach has been successfully applied in the frequency-time
analysis of individual records. However, in many cases it is
preferable to stack several frequency-time diagrams since
this significantly improves the signal-to-noise ratio (e.g.,
Campillo ef al., 1996; Shapiro et al, 1997). The stacking

requires automatic estimation of the true frequency of the
filtlered spectra. In this case, the use of the instantaneous
frequency is problematic because of a possible ambiguity of
its estimation. This ambiguity arises because of the presence
of different modes. We propose the use of the centroid fre-
quency of the filtered spectrum as an approximation to the
true central frequency. We tested the method on two real and
one synthetic data sets and found that the method success-
fully corrected a major part of the systematic error

Systematic Error in Frequency-Time Analysis

As mentioned above, multiple filter analysis is often
used to compute group velocities of surface waves (e.g.,
Dziewonski et al., 1969; Herrmann, 1987; Levshin et al.,
1989). The analysis of an individual record consists of the
following steps: (a) computation of the Fourier transform of
the input signal; (b) multiplication of the complex spectrum
by a gaussian filter,

H(wp, ®) = e~ (@00l gigy) (1)
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where K{(w) is the input spectrum, w, is the central frequency
of the filter, a is the relative bandwidth, and H(w,, ) is the
filtered spectrum; and (c) computation of the inverse Fourier
transform of the filtered complex spectrum, which results in
a frequency-time-dependent function S(w,t). For a single
mode the amplitude of this function at a fixed frequency,
A(wy,1), is, approximately, a gaussian function of time with
the maximum at group time (). It is more convenient to
use the period-group-velocity representation, which is ob-
tained through a simple coordinate transformation,

T = 2m/a,, 2

u = i, (3)

where T is a period, u is the group velocity at that period,
and r is the event-station distance. The dispersion of group
time z(T) is related to the dispersion of the group velocity
U(T) through the relation

U = rit(T). 4

The isoline map of the function A5(7, U) in the period-group-
velocity plane gives a convenient graphical representation
of the signal. The location of the maximum of amplitude at
each period helps to define the group-velocity dispersion
curve.

The resolution of the dispersion curve is improved by
stacking since it accumulates the information provided by
all the available records and provides a mean dispersion
curve for the region of interest. A useful technique involves
a logarithmic stacking in the period-group-velocity (fre-
quency-time) domain, as described by Campillo et al. (1996)
and Shapiro et al. (1997).

A systematic error in the frequency-time analysis, which
results from the variation of the spectral amplitude, is illus-
trated in Figure 1. Let us suppose that spectral amplitude
decreases at low frequencies (as is generally the case for the
spectra of surface waves), and let us consider the conse-
quence of multiplying such a spectrum by a gaussian win-
dow with a central frequency @, (Fig. 1a). As can be seen
from Figure 1b, the maximum amplitude of the filtered spec-
tra will be shifted to a higher frequency, w,. Therefore, the
measured value of the group velocity will correspond to the
frequency @, but it will be attributed to the frequency .
As a consequence, the dispersion curve will be shifted to-
ward lower frequency. In the case of normal dispersion, the
measured values of the group velocity will be systematically
lower than the correct ones.

One alternative for correcting this systematic error is to
replace the frequency @, by the instantaneous frequency
(Levshin ef al., 1989). This instantaneous frequency is cal-
culated from the derivative of the phase of the inverse Fou-
rier transform of the filtered spectrum, @g(wy,t), at the point
of its maximum amplitude, 7(mg):
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Figure 1. Schematic illustration of systematic er-
ror in group velocity measurement resulting from the
fall-off of the spectra at low frequencies. (a) Solid line
shows amplitudes of the input spectra, and dotted line
indicates the gaussian window used in the filter. (b)
Amplitudes of the filtered spectra. (¢) True (solid line)
and measured (dashed line) group velocities.
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During the processing of an individual record, the time,
7(wy), of the maximum corresponding to the mode that we
wish to study can be defined from a visual inspection of the
frequency-time amplitude diagram. However, in the case of
the stacking of numerous frequency-time diagrams, it is
preferable to determine the central frequency of the filtered
spectrum automatically. This calculation of the instantane-
ous frequency using equation (5) can be complicated in the
presence of different modes. This situation is illustrated
schematically in Figure 2. In this case, the amplitude of the
frequency-time diagram has two local maxima at frequency
@y, and we have, as a consequence, two possible choices of
the instantaneous frequency: Q[zy(wg)] is calculated at the
maximum corresponding to the fundamental mode and
Q[z,(ep)] is calculated at the maximum corresponding to
the first higher mode. Thus, the determination of the instan-
taneous frequency becomes ambiguous. For a seismogram
contaminated by multipathing, we can have more than two
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Figure 2. Schematic frequency-time diagram in
the presence of two modes. The dashed lines show
the maxima of the isoline maps. t4(e): fundamental
mode, 7,(w): first higher mode.

local maxima in the frequency-time diagram at a single fre-
quency. In this case, the automatic calculation of the instan-
taneous frequency becomes really problematic. To circum-
vent this problem, we propose to replace the frequency w,
by the centroid frequency of the filtered spectrum, w,:

wlwy) = JwIH(aJD, )? deo (6)

The calculation of w, is simple and unambiguous and can
be easily incorporated in the algorithm of stacking in the
frequency-time domain,

Application of the Method to Observed Data

Below we show two examples of application of the pro-
posed method on observed data.

Mexico

The data set consists of nine broadband, vertical-com-
ponent seismograms of earthquakes along the subducton
zone of Mexico, recorded at the UNAM campus, located in
Mexico City. These seismograms were previously used by
Campillo et al. (1996) to measure an average dispersion
curve of the Rayleigh wave and to invert it for the velocity
structure of southern Mexico. In the study of Campillo et al.
(1996), the correction for the possible systematic error was
not applied. In the present study, we corrected the error using
the method outlined above. We performed the analysis of
displacement seismograms since the spectral fall-off at
longer period is less severe than for velocity seismograms.
For this reason, we first integrated the velocity seismograms.
We then computed the centroid frequencies of the filter using
equation (6). In Figure 3, the new dispersion curve is com-
pared with the one given by Campillo et al. (1996). At pe-
riods between 15 and 35 sec, the corrected group velocities
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Figure 3.  Group-velocity dispersion curves for
southern Mexico. The shadowed areas show average
and +1 standard deviation curves. The light area
shows the results of the measurement without the cor-
rection of the systematic error. The dark area shows
the dispersion curve obtained after the correction of
the systematic error.

are slightly higher than those previously obtained. However,
the difference between the two curves is within the uncer-
tainty of the measurements. Therefore, the errors resulting
from the spectral amplitude variation can be neglected.

India

We investigated the influence of the systematic error on
the dispersion curve measured in the Indian peninsular shield
region (Singh et al.,, 1999). This data set includes eight seis-
mograms recorded by the newly installed broadband seis-
mographic network of India. We integrated the velocity re-
cords to obtain the displacement seismograms and then
calculated an average dispersion curve by applying the log-
arithmic stacking technique in the period-group-velocity do-
main. We performed calculations ignoring as well including
the correction of the central frequency of the filter. Disper-
sion curves illustrated in Figure 4 clearly show that, in the
case of the Indian data, the systematic error results in a sig-
nificant underestimation of the measured group velocities at
periods between 25 and 50 sec. In Figure 5, we present av-
erage normalized spectra for the Mexican and Indian seis-
mograms. The decay rate of the spectral amplitude is almost
two times greater for the Indian data than for the Mexican
data. This explains why the systematic error is large for the
Indian shield region but is negligible for southern Mexico.

The Influence of the Systematic Error
on the Inverted Velocity Structure

For the Indian shield region, we investigated the effect
of the systematic error on the result of the inversion of the
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Figure 4. Group velocity dispersion curves for In-
dian peninsular shield region. The shadowed areas
show average and =+ 1 standard deviation curves, The
light area corresponds to the measurements without
the correction of the systematic error. The dark area
shows the dispersion curve obtained after applying
the correction of the systematic error.
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Figure 5. Average normalized spectra of Mexican

and Indian seismograms. The solid lines show aver-
age values, and the shadowed areas show region of
+1 standard deviation.

measured dispersion curve for the velocity structure. We
used the Monte Carlo algorithm in the inversion (Campillo
et al., 1996; Shapiro et al. 1997). Our initial model included
three layers, and we restricted the possible limits of the
Moho depth between 38 and 44 km. A detailed description
of the selection of parameters of the model are given by
Singh et al. (1999). As can be seen in Figure 6, the inversion
of a noncorrected dispersion curve gives a structure with
lower velocities than those obtained from the corrected one.
The most striking difference is in the velocity of the upper

1141

4.80 —

&
(3
|

4.00 —

S wave velocity (km/s)

380 .

320 T

0.00 10.00 20,00 30.00 40.00 50.00
Depth (km)

Figure 6. Velocity structure obtained from the in-
version of the dispersion curves measured in the In-
dian peninsular shield region. The dashed line shows
the best-fit model found from the inversion of the dis-
persion curve obtained without the correction of the
systematic error. The solid line shows the correspond-
ing model obtained from the dispersion curve cor-
rected for the systematic error. The shadowed areas
show the uncertainties of the inversion.

mantle: the S wave in the upper mantle is less than 4.4 km/
sec if the error is ignored and is 4.65 km/sec if correction is
made for the systematic error. We note that S, velocity re-
ported for the Indian peninsula is 4.61 km/sec (Dube et al.,
1973). The structure obtained from the inversion of the cor-
rected dispersion curve is in agreement with the reported S,
velocity.

Synthetic Test

We tested the proposed method on a synthetic data set.
We computed complex spectra, Si(w), from the amplitude
spectra, A,(w), of the eight vertical-component seismograms
of the Indian data set with the help of the following equation:

i) = Adw)es’ ) HEH: @

where R; is the epicentral distance of ith station, and U(w)
is the dispersion curve calculated for the average velocity
structure of the Indian Peninsula, shown in Figure 6 by con-
tinuous straight lines. We note that the corresponding arti-
ficial seismograms have the same amplitude spectra as the
observed ones from India. We investigated whether the anal-
ysis of these artificial seismograms would lead us to the cor-
rect dispersion curve. We applied the stacking in the period-
group-velocity domain on the corresponding synthetic
seismograms. As in the case of the real Indian data, we per-
formed two measurements: one ignoring the correction and
one incorporating the correction of the systematic error. In
Figure 7, the dispersion curves obtained from the artificial
seismograms are compared with the theoretical dispersion
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Figure 7. Dispersion curves of a Rayleigh wave
measured on the artificial data set. Lower and upper
set of vertical bars show the dispersion measured ig-
noring and correcting the systematic error, respec-
tively. The solid line shows the dispersion curve cal-
culated for the average model of the Indian peninsular
shield. Also shown are group-velocity dispersion
curves measured in the Indian shield. Lightly shaded
and darkly shaded areas show dispersion ignoring and
including the correction, respectively (see Fig. 4).

curve and those measured on the real data. If the correction
is not applied, then the dispersion curve from the artificial
data yields group velocities that are lower than the theoreti-
cal ones. On the other hand, the measured dispersion curve,
after applying the correction, is nearly coincident with the
theoretical one. We conclude that the proposed method sat-
isfactorily corrects the systematic error resulting from the
spectral fall-off at low frequencies.

Conclusions

In this note, we have studied the systematic error in the
surface-wave group-velocity dispersion curve introduced
during frequency-time analysis. The. error results from the
fall-off of the amplitude spectra at long periods. The analysis
of two different data sets shows that the error may be ne-
glected if the decay rate of the spectral amplitude is rela-
tively small. However, when the spectral amplitudes decay
rapidly, the systematic error may significantly affect the
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measured dispersion curve and, consequently, may lead to
errors in the inverted velocity structure. We have shown that
replacing the central frequency of the gaussian filter by the
centroid frequency of the filtered spectrum provides a rea-
sonable correction to this systematic error. An important ad-
vantage of the method is that the calculation of the centroid
frequency does not require a manual analysis of individual
records and, hence, can be performed automatically. There-
fore, this correction can be easily incorporated in the stack-
ing of frequency-time diagrams.
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