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SUMMARY

Passive imaging techniques from ambient seismic noise requires a nearly isotropic

distribution of the noise sources in order to ensure reliable travel-time measurements

between seismic stations. However, real ambient seismic noise often partially fulfills

this condition. It is generated in preferential areas (in deep ocean or near conti-

nental shores), and some highly-coherent pulse-like signals may be present in the

data such as those generated by earthquakes. Several preprocessing techniques have

been developed in order to attenuate the directional and deterministic behaviour of

this real ambient noise. Most of them are applied to individual seismograms before

cross-correlation computation. The most widely used techniques are the spectral

whitening and temporal smoothing of the individual seismic traces. We here pro-

pose an additional preprocessing to be used together with the classical ones, which

is based on the spatial analysis of the seismic wavefield. We compute the cross-

spectra between all available stations pairs in spectral domain, leading to the data

covariance matrix. We apply a one-bit normalization to the covariance matrix eigen-

spectrum before extracting the cross-correlations in the time domain. The efficiency

of the method is shown with several numerical tests. We apply the method to the
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data collected by the USArray, when the M8.8 Maule earthquake occurred in 2010,

February 27. The method shows a clear improvement compared with the classical

equalization to attenuate the highly-energetic and coherent waves incoming from

the earthquake, and allows to perform reliable travel-time measurement even in

presence of earthquake.
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1 INTRODUCTION

Fifteen years ago, Weaver & Lobkis (2001) demonstrated that the Green’s function between

two receivers probing a diffuse acoustic wavefield could be retrieved from the cross-correlation

of the receivers’ records. First applications of this theory in seismology (Campillo 2003; Shapiro

& Campillo 2004; Shapiro et al. 2005; Sabra et al. 2005a) and oceanography (Roux et al. 2004;

Sabra et al. 2005b) have led to a class of routinely-used passive imaging methods in both

domains. Ambient-noise based surface-wave tomography studies have been done at global

scale using hum (Nishida et al. 2009; Haned et al. 2015), at regional scale (Shapiro et al. 2005;

Sabra et al. 2005a; Behm et al. 2016), at local scales (e.g. for the study of faults and volcanoes

Brenguier et al. 2007; Roux 2009; Jaxybulatov et al. 2014; Lanza et al. 2016; Hillers et al.

2016) and in industrial contexts (Mordret et al. 2013, 2014; de Ridder et al. 2014). Body-

waves can also be extracted from the cross-correlation of ambient noise at global scale (Boué

et al. 2013; Lin et al. 2013) and at local scale (Nakata et al. 2015). Also, several applications

have been done in passive monitoring (known as 4-D tomography) of active zones such as

faults (Wegler & Sens-Schnfelder 2007; Brenguier et al. 2008a; Wu et al. 2016) or volcanoes

(Sens-Schönfelder & Wegler 2006; Duputel et al. 2009; Brenguier et al. 2008b, 2014, 2015).

A full recovery of the Green’s functions from the noise cross-correlations is based on the

assumption that the wavefield is equipartitionned, i.e. all the modes are uncorrelated and

equally excited. To reach this regime, the seismic noise should be generated by uncorrelated

sources evenly distributed in the medium (Derode et al. 2003; Wapenaar 2004). Nevertheless,

this condition is often not verified: seismic events such as earthquakes (that are localized in

time and space) often produce strong-amplitude transient signals which are highly coherent.

Also, the ambient microseismic noise (Longuet-Higgins 1950) is generated at specific regions

of the Earth’s surface, and shows a seasonal dependence due to its generating mechanisms

(e.g. Stehly et al. 2006). While the primary microseisms are likely due to the direct interaction
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between oceanic swells and the seafloor in shallow water (e.g. Traer et al. 2012; Ermert et al.

2015), the secondary microseisms can be both generated in deep ocean or coastal areas by the

non-linear interaction of oceanic gravity waves propagating in opposite directions, from which

are generated pressure oscillations on the seafloor responsible for seismic waves generation

(e.g. Longuet-Higgins 1950; Landès et al. 2010; Bromirski et al. 2013). Also, localized and

persistent sources may exist and can contaminate the cross-correlations. This is the case of

the 26-seconds microseismic source observed in Holcomb (1980); Shapiro et al. (2006); Xia

et al. (2013); Seydoux et al. (2016b). The effect of non-isotropically distributed noise sources

have been discussed in Tsai (2009); Weaver et al. (2009); Froment et al. (2010); Kimman &

Trampert (2010); Tian & Ritzwoller (2015); Fichtner et al. (2016). They show that anisotropic

seismic source distributions contribute to produce spurious arrivals or asymmetry of the cross-

correlations functions, resulting in a bias of the travel-time measurements.

Preprocessing techniques therefore are usually applied to the seismic data in order to

reduce the effect of noise anisotropy and strong events influence. First, the data time-segments

that contain strongly-coherent signals are clipped above a given threshold or down-weighted

(e.g. Sabra et al. 2005a; Hillers et al. 2014; Wu et al. 2016). These data time-segments can

even be rejected (e.g. Rhie & Romanowicz 2004; Gouédard et al. 2008; Seats et al. 2011)

which results in a decrease of exploitable data. Also, the individual traces are often equalized

in both spectral and temporal domains as described in Bensen et al. (2007). This attenuates

the strong directional sources. Nevertheless, even if these preprocessing techniques strongly

improve the seismic wavefield isotropy, some anisotropic features of the seismic wavefield may

remain in the cross-correlations, as it has been recently discussed in Seydoux et al. (2016a,b).

In particular, earthquakes and strong microseismic events most of the time resist to this

amplitude equalization process which is performed on individual traces.

More recently, array-based filtering techniques have been developed in order to enhance

the recovery of Green’s functions from the cross-correlations (Gallot et al. 2012; Leroy et al.

2012; Menon et al. 2012; Carrière et al. 2013). A passive inverse filter was proposed in Gallot

et al. (2012) to enhance the isotropy of surface waves in the ambient seismic noise, and

the results are compared with an active seismic experiment. In ocean acoustics, Leroy et al.

(2012) proposed to improve the emergence rate of Green’s function with a spatio-temporal

filter built up from the first singular vectors of a reference covariance matrix. Finally, Carrière

et al. (2013) proposed a spatial-filter approach based on an angular filtering of volume noise

using least-square truncated pseudo-inversion of a steering matrix. This last study allowed to

filter unwanted directive sources from the cross-correlation, such as shipping-related signals in
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underwater acoustics, but cannot be used automatically because the filter has to be designed

with respect to the source back-azimuth.

Our approach is inspired by Gallot et al. (2012) and Carrière et al. (2014), and is directly

based on preprocessing the covariance matrix computed from array seismic data. This is an

advantage compared with Gallot et al. (2012), because it can be applied to a pre-existing

cross-correlation database. We propose to extend the widely-used spectral equalization pro-

cess presented in Bensen et al. (2007), which is applied to the frequency spectrum of individual

seismograms, to the equalization of the covariance matrix spectrum (i.e. the ordered eigenval-

ues of the covariance matrix). Because the entries of the covariance matrix have been measured

at different spatial locations, we interpret our approach as a spatial equalization process. This

method allows to correct for the wavefield anisotropy in two ways: (1) the influence of strong

directive sources is substantially attenuated, and (2) the weakly excited modes are reinforced,

allowing to partially recover the conditions that ensure a good-quality Green’s function re-

trieval. It presents the advantage to be automatic, and does not require the knowledge of the

source back-azimuth, contrary to Carrière et al. (2014).

In the real data, uncorrelated noise may be present in the covariance matrix. It has been

shown in many studies Bienvenu & Kopp (1980); Wax & Kailath (1985); Gerstoft et al. (2012);

Seydoux et al. (2016a) that the highest eigenvalues of the covariance matrix are related to

coherent information, whereas the weakest are related to the uncorrelated noise. Similarly

to Gallot et al. (2012); Carrière et al. (2014), our technique requires to be performed on a

selected subspace of the covariance matrix, in order not to take into account uncorrelated

noise (such as self-sensor electronic noise) in the equalization process, which could result in

strong artifacts in the cross-correlation functions. In the present paper, we show how the

appropriate truncation can be derived from the number of degrees of freedom of the seismic

wavefield from Walsh & Vekua (1969).

Finally, we present an eigenvector-based spatial filter useful to distinguish between surface

and body waves. This filter is to be used together with the equalization of the eigenvalue

spectrum. We apply it in the case of the equalization of earthquake-related signals when

high-amplitude body-waves are present, and show that we can remove them from the cross-

correlation functions.

The paper is organized as follows: Section 2 presents the theoretical statements used to

properly explain our approach. The equalization of the covariance matrix spectrum is defined

therein. Section 2 also presents the theoretical derivation of the eigenvalue cutoff used in the

equalization process, and with a more detailed derivation presented in Appendix A. Section 3
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introduces the seismic array used in both numerical and real experiments. The method is

then illustrated with a synthetic example in Section 4 where a source embedded in idealistic

isotropic noise is equalized. In Section 4, we also investigate the effectiveness of our method

with using two-dimensional numerical experiments with heterogeneous velocity model. We

show that our technique allows to substantially reduce the impact of a strong seismic source

embedded in isotropic seismic noise in the cross-correlations. In particular, we investigate

the effectiveness of our approach. To that end, we quantify the travel-time measurement

error remaining after having applied the method. Finally, we apply the technique to the data

recorded USArray during 2010 in Section 5. We focused our analysis on 30 days of continuous

data centered around the 2010 M8.8 Maule earthquake (e.g. Delouis et al. 2010), and show

that the equalization of the covariance matrix eigen-spectrum strongly attenuates the effect

of the earthquake in the cross-correlations.

2 METHOD

2.1 Green’s function retrieval from ambient noise cross-correlation and array

covariance matrix

It is a well-established theory (Weaver & Lobkis 2001; Derode et al. 2003; Wapenaar 2004;

Gouédard et al. 2008) that the correlation Rij(τ) of the ambient noise recorded at two sensors

located at positions ri and rj leads to

dRij(τ)

dτ
=
σ2

4a

(
Gij(−τ)−Gij(τ)

)
, (1)

where τ is the correlation time, σ is the noise variance, and where a is the attenuation of the

medium. Here, Gij(τ) is the time-domain Green’s function between the two sensors i.e. the

signal that would be recorded at sensor j if an impulsive source were located at sensor i.

The theorem presented in Eq. 1 holds when the noise is generated by uncorrelated sources

evenly distributed in the medium (e.g. Wapenaar 2004). The statistical definition of the cross-

correlation between signals ui(t) and uj(t) recorded by two sensors i and j is given by

Rij(τ) ≡ E
[
ui(t)uj(t− τ)

]
, (2)

where E denotes expected value. Often, Eq. 2 is computed in the frequency domain, Rij(τ) =

F−1
[
Cij(f)

]
, from the array covariance matrix Cij(f) defined as

Cij(f) ≡ E
[
ui(f)u∗j (f)

]
, (3)

where ui(f) = F
[
ui(t)

]
is the Fourier transform of the seismogram recorded in station i
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and ∗ represents complex conjugation. The covariance matrix is a square N × N matrix,

where N is the total number of seismic sensors of a given seismic array.

2.2 Estimation of the array covariance matrix

The array covariance matrix is estimated from the array data vector u(f, t) such as

u(f, t) = [u1(f, t), u2(f, t), . . . , uN (f, t)]T , (4)

where ui(f, t) is the Fourier transform of the data time-segment recorded by the station i of

duration δt and starting at time t. We then estimate the array covariance matrix from a finite

number M of time segments, i.e. over a total duration δt(M−1)/s, where s is the overlapping

ratio of each time-segments

C(f, t) =
1

M

M−1∑
m=0

u(f, t+mδt)u†(f, t+mδt) . (5)

The estimated array covariance matrix C differs from the theoretical array covariance

matrix C because it estimates the statistical relationship between the entries of the array

data vectors from a finite number of windows. It converges towards C as the number of

subwindows M →∞. We can therefore define a convergence criterion to ensure the estimated

covariance matrix to be close enough to the theoretical covariance matrix. As a rule of thumb,

many studies claim that having M number of estimating time-segments larger than three

times the number of array elements N might be sufficient to properly estimate the array

covariance matrix from real data (e.g. Menon et al. 2012). In the present study, we consider

the case when the covariance matrix is estimated with M � N (i.e. M ≈ 10N), in order to

avoid any estimation problems.

2.3 Equalization of the covariance matrix eigen-spectrum

The covariance matrix is a positive semi-definite hermitian matrix by definition. It can there-

fore always be diagonalized, such as

C = Ψ∆Ψ† , (6)

where ∆ = diag(λ1, λ2, . . . , λN ) is the diagonal matrix formed by the non-negative eigenvalues

λi and where Ψ is the matrix formed by the corresponding eigenvectors ψi. We propose

to construct the covariance matrix Ĉ = Ψ∆̂Ψ† from its eigenvectors with the equalized

eigenvalues ∆̂ defined with
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∆̂ii =

λi = 1 if i ≤ L

λi = 0 otherwise
, (7)

where L is the eigenvalue cutoff above which we consider the eigenvectors to be noise-

related only, similar to Gallot et al. (2012). We derive theoretical expression for L in the next

section.

2.4 Theoretical derivation of the eigenvalue cutoff

Obviously, the eigenvalue cutoff L of ∆̂ has to be chosen carefully. Indeed, if it is chosen too

small, the wavefield information is missed and a too large cutoff will amplify the influence of

electronic noise. The optimal value depends on both the geometry of the seismic wavefield

that is considered (surface or volume) and on the physical number of degrees of freedom of

this wavefield, that is the number of coefficients that are useful to fully describe the seismic

wavefield in an arbitrary basis of functions. This number of coefficients is related to the

slowness of the medium γ, to the analyzing frequency f and to the typical radius r̄ of the

seismic array, which we define as

r̄ =
2

N(N − 1)

N∑
i=1

N∑
j>i

rij , (8)

where rij is the great-circle distance between sensors i and j.

A fully detailed derivation of the eigenvalue cutoff is presented in Appendix A, where

we use the cylindrical harmonic decomposition for the 2D case and the spherical harmonic

decomposition in the 3D case. We then use the theoretical result presented in Moiola et al.

(2011) in order to count the number of functions that contribute to a full description of

the seismic wavefield. This first approach only holds when the wavefield is oversampled by

the seismic array (that is when the interstation distance is smaller than half the wavelength).

When the wavefield becomes undersampled, we infer in Appendix A that the eigenvalue cutoff

should be saturated to N/2 in order to maximize the quality of reconstruction of the covariance

matrix. This leads to the following eigenvalue cutoff for the 2D and 3D cases:L
2D(f) = min

{
2d2πfγr̄e+ 1 , N/2

}
L3D(f) = min

{
(d2πfγr̄e+ 1)2 , N/2

} (9)

As different type of waves may exist in an elastic medium, involving different slownesses,

we should treat each of these waves separately, that is, we should focus on surface waves or
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body waves only. Also, for different types of body waves, we should consider only P or S waves.

We finally observe that the eigenvalue-cutoff depends on the slowness, which is supposed to be

an unknown quantity. A rough estimation of the average slowness γ0 is nevertheless sufficient

to extend our approach to the heterogeneous case.

3 US TRANSPORTABLE ARRAY GEOMETRY

The present study investigates the data continuously collected by the vertical channel of

the USArrray seismic stations during 2010. In order to observe the isotropy of the seismic

wavefield, we use the conventional beamforming technique (e.g. Veen & Buckley 1988), that

estimates the coherence of the seismic wavefield with respect to the slowness and back-azimuth.

The beamforming B(f,γ) can be expressed as the projection of the covariance matrix C(f)

onto plane-wave beamformers b(f,γ) = e−2iπfγ·r as following

B(f,γ) = b†(f,γ)C(f)b(f,γ) , (10)

where f is the frequency, γ = γxex + γyey is the 2-D apparent slowness vector in the seismic

array plane, and where r = xex+yey is the seismic stations coordinate vector. The maxima of

the beam power amplitude |B(f,γ)|2 indicates the energy of the incoming waves as a function

of the slowness and the back-azimuth encoded in γ.

The beamforming resolution (size of the main-lobe) is inversely proportional to the array

aperture (e.g. Veen & Buckley 1988; Rost 2002). If the seismic array shape shows a larger

extent in a specific direction, then the slowness resolution is anisotropic. This is particularly

inconvenient when our goal is to observe the isotropy of the seismic wavefield, that is to

observe the energy of the seismic waves in the slowness space with respect to the azimuth.

We therefore select a nearly square-shaped seismic array formed by 34 seismic stations

of the USArray, shown with inverted triangles in Fig. 1. The typical inter-station spacing

is ∼50 km and the spatial extent of the seismic array is about 500 km in both East-West

and North-South directions. The typical radius r̄ that corresponds to the average interstation

spacing of the selected seismic array is 161.2 km, and the corresponding circle is represented

with dashed line on Fig. 1.
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4 NUMERICAL EXPERIMENTS

4.1 The homogeneous case

This preliminary test aims at illustrating the method in the simple case where the medium

is homogeneous with space-independent slowness γ0 = 0.25 s/km, and where we set the

frequency f0 to 0.02 Hz in order not to induce aliasing artifacts in the beamforming output.

The selected slowness is the typical Rayleigh wave slowness within the Earth around this

frequency.

First, we calculate the idealistic covariance matrix Cideal directly from the theoretical

expression of the 2-dimensional isotropic seismic noise (e.g. Cox 1974)

Cij,ideal = J0(2πf0γ0|ri − rj |) , (11)

where ri and rj are the position vectors for stations i and j respectively, so that |ri − rj |

represents the interstation distance. The eigenvalue spectrum of Cideal is presented in Fig. 2a.

We observe that the eigenvalues are decaying steadily, and vanish with high eigenvalue indexes.

This indicates that the number of degrees of freedom of the seismic wavefield L2D is smaller

than the number of sensors N . Indeed, in this particular case, one gets L2D = 2d2πf0γ0r̄e+1 =

13 (as illustrated in Fig. A1a), which is in accordance with the obtained eigenvalue spectrum.

The corresponding beamforming obtained from Cideal is presented in Fig. 2d. We see that

the energy is located near the slowness circle of radius γ0 = 0.25 s/km. This quasi-circular

shape reflects that the energy incomes from all azimuths with the same energy. The slight

differences in amplitude around azimuths 45◦ and 225◦ are due to the non-perfectly uniform

shape of the selected USArray stations.

We then calculate a second covariance matrix Csource, where we embed a strong source

in the aforementioned idealistic 2-D isotropic noise. This second covariance matrix aims at

illustrating the case where the seismic data contain an earthquake-related signal, embedded

in background seismic noise. We set the amplitude of the source as = 10 times higher than the

one of the seismic noise. Assuming that both the source and the seismic noise are statistically

independent, this second covariance matrix is obtained with

Csource = Cideal + a2
sss
† , (12)

where s is the source-related array data vector such as si = e2πf0γ0(cos θxi+sin θyi), and θ is

the source back-azimuth. We use θ = 135◦ in this first test. The eigenvalue spectrum of

Csource is presented in Fig. 2b, where we clearly observe the strong dominance of the first

eigenvalue, which is mainly related to the high-amplitude source. The corresponding beam
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power in Fig. 2e exhibits a high-amplitude spot located at azimuth 135◦ related to the source,

and a background circular-shaped pattern related to the idealistic noise.

We finally obtain the equalized covariance matrix Cequalized from the truncated summation

of the L2D = 13 firsts eigenvectors, with the equalized eigenvalues as visible in Fig. 2c.

We see in Fig. 2f that the amplitude of the source and the one of the background noise have

been equalized, and the circular shape recovered. This simple test illustrates our equalization

technique, with considering expected covariance matrices of idealistic noise and signal related

to a strong far-field single source. One notices that the resulting beamforming energy has

been nearly-uniformly equalized close to the slowness circle corresponding to 0.25 s.km−1 in

Fig. 2f, and that we do not observe anymore the slight asymmetry due to the arrays shape in

the idealistic case (Fig. 2d). This indicates that small errors are induced with the equalization

of the covariance matrix spectrum. These errors are investigated in terms of travel times

measurements from the corresponding cross-correlation in the following section that considers

the heterogeneous case.

4.2 The heterogeneous case

4.2.1 Numerical setup

We perform a 2-D acoustical simulation which models Rayleigh waves propagation only. We

used two-dimensional finite-differences for solving the 2-D wave equation.

The numerical setup of the simulation is presented in Fig. 3a. In order to use the geometry

of the selected USArray seismic stations presented in Fig. 1, we performed the simulation on

a 2500×2500 km2 grid. We chose a spatial grid step dx = 1.6 km, and a time step dt = 0.065 s

in order to decrease numerical dispersion. The reflexions of the pressure waves on the borders

of the numerical domain are canceled out using perfectly matched layers derived from Liu

(1997) and shown with darker zones in the borders of the spatial domain in Fig. 3a.

The velocity model is changing linearly in the x-direction from 2 km.s−1 to 6 km.s−1.

It is presented in colorscale in Fig. 3a relatively to the average velocity v0 = 4 km/s. The

positions of the N = 34 seismic stations are shown with blue triangles. In order to simulate

noise sources, we used a number of S = 200 seismic sources deployed circularly around the

seismic array (shown as red stars in Fig. 3a). We consider this number of sources to ensure the

sensor-to-sensor cross-correlations computed from numerical noise sources to have a correla-

tion coefficient of more than 90% with the direct Green’s functions when assuming sufficient

averaging and equal source amplitude (see for instance Derode et al. 2003).



Geophys. J. Int.: Covariance matrix eigen-spectrum equalization 11

4.2.2 Protocol: numerical Green’s functions retrieval from ambient noise cross-correlation

In order to estimate the numerical Green’s function Gab(t) of the medium between two grid

nodes a and b, we emit a pulse-like signal r(t) at a location a and consider the record of this

pulse at any location b to consist in the Green’s function. The pulse-like signal is chosen to

be a Ricker wavelet (Ricker 1953):

r(t) =
(
1− (t− t0)2β2

)
e−(t−t0)2β2 ⇔ R(f) = R0f

2e−f
2/β2

(13)

where β is the frequency bandwidth, t0 is the time shift of the wavelet, and R0 is a con-

stant. Eq. 13 indicates that the both temporal and frequency content of the pulse are second

derivative of a Gaussian function, which is a symmetric function with zero-mean amplitude.

Its half-height width is of 1/β in the temporal domain, and of β in the frequency domain. We

performed the analysis between 100 and 10 seconds of period (0.01 and 0.1 Hz), so we chose

β = 0.1 Hz. The temporal amplitude of the pulse is shown in Fig. 3b where t0 = 100 seconds,

with its corresponding power spectrum in Fig. 3c. We see that with our choice of parameters,

the pulse spectrum is positive from 0.01 to 0.1 Hz, and its energy vanishes beneath -150 dB

at f > 0.2 Hz.

We estimate all numerical Green’s functions Gis(t) between each sensor i = 1 . . . N and

sources s = 1 . . . S. Because of the reciprocity of the wave equation, we notice that Gis(t) =

Gsi(t). Therefore, we compute Gsi(t) with emitting the pulse from each seismic stations and

record the wavefield at the sources in order to save computational time. (This allows to

perform only 34 simulations against 200 if the pulse were sent from the seismic sources.) The

numerical cross-correlation Rij(t) of the signals collected at sensors i and j can be derived

when the wavefield is generated by S seismic sources with known source-to-receiver Green’s

functions Gis(t) and when the sources are emitting signals ns(t):

Rij(t) = E
[∑
s,s′

(
Gis(t)⊗ ns(t)

)
⊗
(
Gjs′(−t)⊗ ns′(−t)

)]
, (14)

where ⊗ is the temporal convolution product. The isotropy of the numerical seismic wavefield

can be controlled by the amplitude of the signals ns(t) emitted by each sensors as detailed in

the following.
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4.2.3 Numerical Green’s functions retrieval from isotropic ambient seismic noise

An isotropic seismic wavefield can be obtained if we impose the seismic sources to emit un-

correlated noise ns(t) of equal variances ν from one source to another such as

E
[
ns(t)⊗ ns′(−t)

]
= ν2δss′ , (15)

where δss′ is the Kronecker delta, and if the sources are evenly distributed on a surrounding

curve around the seismic array, then the expected value of Eq. 14 reduces to (omitting the

amplitude normalization factor)

Rij(t) =

S∑
s=1

Gis(t)⊗Gjs(−t) = −Gij(t) +Gij(−t) , (16)

indicating that we retrieved Eq. 1. In order to save computational time, we compute the cross-

correlation functions directly from Eq. 16, implicitly assuming uncorrelated noise sources and

sufficient averaging.

The cross-correlations Rij(τ) computed between all 34× (34−1)/2 = 561 pairwise combi-

nations of seismic stations are presented in colorscale in Fig. 4a sorted with the inter-station

spacing and against time. In order to automaticly look for physically possible arrival times in

the next section, we masked the correlation functions for arrival times with velocities higher

than 6 km/s and smaller than 2 km/s, which correspond to the extreme values of the velocity

model (indicated with dashed lines in Fig. 4a).

In this first experiment, we impose the wavefield to be isotropic. We applied a narrow

bandpass-filter between 12.5 and 50 seconds (0.02 - 0.08 Hz) to the cross-correlation functions

in order to allow for comparison of the results with beamforming analysis that is computed

at a single frequency. We observe the “V” shape formed by the cross-correlation functions,

which is a typical expression of the good azimuthal coverage of the seismic sources with equal

amplitudes because it induce symmetric inter-station cross-correlations functions.

We perform the plane-wave beamforming analysis of the covariance matrix obtained from

the inverse Fourier transform of the cross-correlation functions. The beam power obtained at

T = 54.6 seconds (which approximatively corresponds to the center of the frequency band used

to filter the cross-correlations in Fig. 4a) is presented in Fig. 4d. We notice that the spectral

maximum actually is 33 seconds. However, we chose 54.6 seconds in order to mitigate alias-

ing artifacts that contaminate the visibility of the results, without any loss of generality. We

observe the typical circular shape, also synonymous with evenly-distributed equal-amplitude

seismic sources (i.e. it indicates the energy incomes from all directions with the same ampli-

tude). Most of the beam power is nearby the average slowness circle (0.25 s/km).
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Note that because we set the space-dependant velocity in the medium with a constant

volumic mass, the waves have different amplitude with respect to the local velocity. This is

naturally resulting from the energy conservation principle. In order to avoid any amplitude

problems relative to the changing velocity in the medium, we normalized the broad-band

source-to-receivers Green’s functions Gis(t) to their maximal amplitude before performing

the experiment.

4.2.4 Numerical Green’s functions retrieval from anisotropic seismic wavefield

We perform the same experiment than in the isotropic case, but we rewrite Eq. 15 as following

E
[
ns(t)⊗ ns′(−t)

]
= νδss′ + ν0δss0 , (17)

where s0 is the index of the strong seismic source of amplitude ν0 � ν. This new relationship

correspond to a strong seismic source of amplitude ν0 embedded in isotropic seismic noise of

variance ν. If the sources are evenly distributed, which is the case in the present simulation,

the source index s0 is simply related to a given azimuth θ0.

We compute the inter-station cross-correlation functions with a source located at azimuth

θ0 = 158◦ (corresponding to the one of the 2010 M8.8 Maule earthquake observed from the

USArray, see Fig 8b), and with an amplitude ten times higher than the background isotropic

noise (i.e., ν0 = 10ν). The results are presented in Fig. 4b, in colorscale, sorted with the

inter-station spacing and with respect to time. We see that the “V” shape related to the

background isotropic noise is contaminated with many spurious waves arrivals with smaller

travel-times. These spurious peaks are caused by the strong source, and their travel-times are

shifted relatively to the azimuth between the inter-station axis and the direction-of-arrival of

the wave θ0.

The corresponding beamforming analysis is presented in Fig. 4e. We clearly observe the

presence of the strong seismic source because the energy is incoming from azimuth 158◦. The

isotropic seismic noise is still visible in the background, with the typical circular shape with

amplitude 10 times smaller that the main spot.

4.2.5 Numerical Green’s functions retrieval from the equalized anisotropic seismic wavefield

We finally apply our equalization technique to this last covariance matrix built up from

isotropic noise plus a strong source. We perform the eigen-decomposition at each frequency,

and reconstruct the covariance matrix from the 2-D frequency-dependent number of equalized
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eigenvectors as described by Eq. 9. We used γ0 equal to the average velocity in the medium

0.25 s/km in this approach.

The cross-correlations obtained from the equalized covariance matrix are presented in

Fig. 4c, and the corresponding beamforming in Fig. 4f. We observe that the symmetry of

the cross-correlation functions is strongly improved, suggesting that the effect of the coherent

source has been substantially attenuated. We notice that the spatial equalization is less effi-

cient for the cross-correlations with large inter-station spacing (above 400 km) because their

inter-spacing is large compared with the average one r̄.

The corresponding beamforming shows a clear improvement in comparison with the raw

result shown in Fig. 4e. The circular shape is greatly improved, indicating that we reinforced

the weak isotropic background noise. The presence of the seismic source is still visible at

the azimuth θ0 = 158◦, meaning that the source effect has not been completely removed, in

contrast with the method presented in Carrière et al. (2013), but its energy has been equalized.

4.2.6 Travel-time measurements

A legitimate question remains: does this equalization process allow to recover the information

relative to the velocity in the medium? In order to address this question, we propose to

compare the waves travel times and to compute the inversion in order to have a look at the

recovered velocity model.

The arrival times are measured from the maximum of the envelope of the cross-correlation

functions, which can be obtained from the Hilbert transform. Three selected cross-correlation

functions are presented in Fig. 5a, corresponding to the three cases investigated in Fig. 4a, b

and c. The travel-time extraction is shown in Fig. 5b. The selected sensor pair is highlighted

with black triangle in the inset of Fig. 5.

The reference cross-correlation is obtained from the isotropic wavefield configuration. We

see that the amplitude is almost symmetric, and that two separate wavepackets have emerged

from the cross-correlation with symmetric travel-times compared to the zero time lag, with

almost no energy far from the wavepackets. The envelope maxima lead to the extraction of

the waves travel-time between the two considered sensors.

When a single source is dominating, we still observe two small wavepackets that correspond

to the isotropic case, plus an additional strong-amplitude peak located near the zero time lag.

This peak of amplitude is related to the source amplitude and azimuth, and lead to a biased

travel-time estimation (abnormally close to 0).

The cross-correlation obtained from the equalized covariance matrix is closer to the isotropic



Geophys. J. Int.: Covariance matrix eigen-spectrum equalization 15

case. Although the noise is still present, we can observe that the two wavepackets related to

the isotropic wavefield have been recovered, whereas the strong-amplitude peak related to the

coherent source has been attenuated. The travel-time extracted from the related envelope in

Fig. 5b is now closer to the reference case, with a slight difference due to the imperfection of

the reconstruction.

We systematically investigate the errors in travel-time measurements (Fig. 6) within two

cases (a) when the wavefield is contaminated with the strong-amplitude source and (b) with

the equalization of the eigenvalues applied to (a). The travel-time measurements are obtained

from the time-lag corresponding to the maximum of the envelope, with taking the absolute

value in order to get positive travel-times. The reference travel-times are obtained from the

isotropic cross-correlation functions.

The overall travel-time measurement error ε is obtained in both cases from

ε = 100× 1

Nc

Nc∑
n=1

|ttn − ttref,n|
ttref,n

(18)

where ttn is the travel-time of the nth cross-correlation function, ttref,n is the reference travel-

time for the nth reference cross-correlation, and Nc = N(N − 1)/2 is the total number of

cross-correlation functions.

Fig. 6a shows that the strong source induces an overall error in the travel-time estimation of

11.73%, with under-estimated travel-times. This overall error reduces to 1.49% after equalizing

the covariance matrix spectrum in Fig. 6b.

We present the results of the inversion of the travel-times to recover the velocity model in

Fig. 7. The true velocity model is shown in Fig. 7a. Fig. 7b shows the velocity model obtained

from the isotropic noise, Fig. 7c corresponds to the isotropic case with an additional strong

seismic source and Fig. 7d is the case (c) where we equalized the covariance matrix spectrum.

The inversion is performed using the travel-time measurements between all inter-station cross-

correlation function, using the open-source Python package Fatiando (Uieda et al. 2013). We

performed the inversion with a 2D straight-ray model on a 131×131 grid, with a regularization

parameter of 50 km in order to smooth the bias in travel-time measurements from the cross-

correlation functions.

The velocity model obtained in case of isotropic noise (Fig. 7a) is the best estimation

since it is obtained from a best-case scenario. There are no path coverage outside the box

between x, y ∈ [1100, 1400] which explains why the inversion leads underestimated velocities

on the border of the grid. As expected, the case where a strong source is located in θ0 =

158◦ lead to strong bias in the travel-time measurements, which induce strong anomalies in



16 L. Seydoux et al.

the velocity inversion. The colorscale is saturated between -10% and +10% relatively to the

average velocity v0 = 4 km/s. Finally, the equalization of the covariance matrix spectrum

strongly improves the velocity model exactness.

5 APPLICATION TO THE DATA COLLECTED BY THE USARRAY:

EQUALIZATION OF THE 2010, M8.8 MAULE EARTHQUAKE

5.1 Standard cross-correlation in presence of earthquakes

We present in Fig. 8 the magnitudes of the M ≥ 5 earthquakes that occurred worldwide

between January 1 and April 1 of 2010 obtained from the U.S. Geological Survey search

earthquake catalog. We narrowed the focus on two 30-days long time-segments of data in-

dicated with colored boxes in Fig. 8a. The yellow box contains no earthquakes with magnitude

higher than 6.3, with epicenter locations shown as yellow dots in the azimuthal world map in

Fig. 8b. The red window is centered around the M8.8 Maule, Chile megathrust earthquake

(e.g. Delouis et al. 2010).

The covariance matrix C(f) is estimated from the USArray data using equation 5. The

duration δt of the sub-windows is 960 seconds, and we used a number of M = 20 half-

overlapping sub-windows (i.e. the covariance matrix is obtained within ∆t = 9600-seconds

long time-segments of data). Before computation, we pre-process the data over each 9600-sec

long windows with temporal and spectral smoothing techniques described in Bensen et al.

(2007). We then stack it over 24-hours in order to obtain daily estimates Cd(f). The effective

number of sub-windows is then Meff ≈ 2× 20× 24× 3600/9600 = 360, the covariance matrix

is thus robustly estimated on each day because Meff � N , where N is the number of seismic

stations (e.g. Menon et al. 2012).

In order to investigate the wavefield isotropy of the two time-segments of data presented in

Fig. 8, we stack the daily covariance matrices obtained in each period of time. The planewave

beamforming analysis is then performed onto the stacked covariance matrices using Eq. 10.

We show in Fig. 9 the beamforming obtained within the yellow window (Fig. 9a) and red

window (Fig. 9b).

The wavefield shown in Fig. 9a is mostly composed of Rayleigh waves (because most of the

energy is located near the 0.25 s/km slowness circle) arriving from many different directions,

representing a distribution of seismic sources suitable for noise-based tomography.

Fig. 9b is obtained from the time-segment when the Maule M8.8 earthquake occurred.

Even if the covariance matrix is stacked over 30 days including 15 days before the earthquake
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nucleation, and even with the additional spectral and temporal preprocessings, we observe

a strong dominance of Rayleigh waves generated by this earthquake and its aftershocks (the

waves are incoming with an apparent slowness of 0.25 s/km and with about 160◦ of azimuth).

We also observe the presence of body waves with apparent slownesses close to 0.

These results were obtained from the covariance matrix estimated from the data pre-

processed with the classical temporal and spectral equalizations. We see that, in agreement

with the results obtained in Seydoux et al. (2016b), the equalization process does not allow to

fully isotropize the seismic wavefield and the presence of spatially localized coherent sources

(Fig. 9b) remains clearly encoded in the covariance matrix.

The specific case of the Maule earthquake is herein further investigated, because it rep-

resents a problematic case for accurate measurements of travel times from cross-correlations.

In order to show the influence of the earthquake-related highly-coherent signals on the cross-

correlations, we compute the cross-correlation functions between all pairs of selected stations

from the inverse Fourier transform of the covariance matrix, and present them in Fig. 10a

in colorscale as a function of time and sorted with respect to the inter-station spacing. The

cross-correlation functions are bandpass-filtered between 12.5 and 50 seconds. The maximal

inter-station spacing is about 525 km, and the correlation time is shown between -200 and

200 seconds. Also, the corresponding beamforming is presented in Fig. 10d, averaged between

40 and 50 seconds of period.

We can see several features in this first result. First, we observe in the background the

typical “V” shape formed by the Rayleigh waves due to the ambient seismic noise. The same

observation can be done from the corresponding beamforming, with the low-amplitude circular

shape at slowness 0.25 s/km in Fig. 10d. This is an important observation because it allows to

consider the seismic wavefield to be generated by seismic sources with a quasi total azimuthal

coverage, with different amplitudes, which a required condition to apply our method. A second

important feature is the strong peak present in many cross-correlations near the zero time-lag.

This peak can be both related to (1) the spurious arrivals due to the Rayleigh waves incoming

from the Maule earthquake at the pairs of stations which axis is orthogonal to the earthquake

azimuth, and (2) to the body waves that income from the earthquake, also responsible for the

low-energy peak visible in the beamforming, at apparent slownesses close to 0.

From these observations, we understand that the travel-times measurements cannot be

automatically evaluated from the cross-correlation functions because a lot of them will lead

biased travel-times, similarly than in Fig 6a.
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5.2 Equalization of the M8.8 Maule earthquake

We equalize the eigenvectors of daily covariance matrix (Eq. 7), and we then stack the fil-

tered covariance matrices, allowing to increase the performances of the method. Even if the

Rayleigh waves are known to be dispersive within the Earth, we use a constant slowness

γ0 = 0.25 s/km (observed on the beamforming at T ∈ [40, 50] seconds of period) in order

to define the eigenvalue-cutoff L(f) from Eq. 9. A more precise result should be obtained

with considering the typical Rayleigh waves slowness with respect to the frequency (disper-

sive approach). As we want to retrieve the travel-times of Rayleigh waves, we approximate

the problem with a 2D situation, and choose L(f) = L2D(f) (Eq. 9, Fig. A1b).

The inter-station cross-correlations obtained from the equalized covariance matrix is pre-

sented in Fig. 10b, and the corresponding beamforming is shown in Fig. 10e. We clearly observe

that the equalization process has increased the energy of Rayleigh waves recovered from the

background noise. The strong spot of energy related to the Maule earthquake Rayleigh wave

is still visible in the beamforming. However, its amplitude have been quasi-equalized to waves

coming from other directions. This is in accordance with the numerical result presented in

Section 4 (Fig. 4c).

We also see in Fig. 10e a linear feature oriented along the direction corresponding to the

Maule earthquake and filling the whole range of slownesses within the Rayleigh wave circle.

Because the beamforming only gives access to an apparent slowness, this pattern most likely

represents the body waves generated by the Maule earthquake. These body waves have been

equalized by our method, because of its inability to distinguish between 2-dimensional and

3-dimensional wavefields. Indeed, we choose the eigenvalue L(f) = L2D(f), but as mentioned

in Sec. 2, L3D > L2D(f). We therefore see that from its fundamental definition (see Eqs. 9) the

equalization of the covariance matrix spectrum can reinforce body waves if they are present

in the wavefield, and if they are spanned by eigenvectors ψi with index i < L2D(f).

5.3 Eigenvector-based body wave removal

In order to remove the influence of the unwanted body waves observed in Fig. 10d, we propose

to select surface waves from the covariance matrix eigenvectors before performing the eigen-

spectrum equalization. The selection can be done with the beamforming analysis, applied to

the covariance matrix eigenvectors ψn, with rejecting those that contain energy inside an

arbitrary slowness threshold γthr. The beamforming Bn applied to the nth eigenvector where
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n = 1 . . . N is the eigenvector index is given by

Bn = b†ψnψ
†
nb , (19)

where b is the beamformer defined in Section 2. The beamforming analyses of the first 27

eigenvectors of the array covariance matrix computed from the Maule earthquake (Fig. 10c) are

presented in Fig. 11. Each eigenvector show a specific beam pattern, and some of them clearly

contain body waves (for instance, eigenvectors #4, 8, 14, 15, and 22), while the other ones

does not. Therefore, we design a rejection criterion upon which the eigenvectors that contain

energy inside an arbitrary circle are not taken into account in the equalization procedure.

In the present case, we rejected all the eigenvectors that contain energy inside the slow-

ness circle γthr = 0.15 s/km. To that end we compare the maximal value of the beamforming

outside and inside the slowness circle. If the maximal value inside the slowness circle is greater

than 85% of the outside maximal value, we rejected the corresponding eigenvector. The re-

jected eigenvectors are visible with a red label in Fig. 11. This selection is performed at each

frequency.

We perform the equalization of the covariance matrix with the additional eigenvector se-

lection, and present the corresponding cross-correlation functions and beamforming in Fig. 10c

and f respectively. We observe that the beamforming pattern related to the body waves that

were incoming from the Maule earthquake have been removed. The corresponding peaks vis-

ible near the zero time-lag in the cross-correlations have been attenuated as well.

In order to better understand the effects of this equalization process, we present two

particular cases in Fig. 12, where the stations pairs have been selected to be parallel and

orthogonal to the earthquake azimuth.

The standard cross-correlations aligned with the earthquake azimuth are presented in

Fig. 12a. As expected, the Rayleigh waves incoming from the earthquake do not induce spu-

rious arrivals in the cross-correlations because they contribute to the construction of coherent

wavefronts that propagate along the path between the two stations. Nevertheless, the ampli-

tude of the cross-correlation functions are asymmetrical because most of the energy incomes

from one side of the system. The same result after having applied the spatial equalization

and eigenvector selection (in Fig. 12b) shows up to strongly improve the symmetry of these

cross-correlations.

The station pairs which axis is orthogonal to the earthquake azimuth without equalization

show cross-correlation functions with strong peak near the zero time-lag in Fig. 12c. This can

be simply explained geometrically: the teleseismic waves impinging on the stations from the
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earthquake arrive at the same moment to both stations of this orientation. This strong peak

is almost completely canceled from cross-correlation function obtained after the equalization

and surface-wave selection of the covariance matrix (Fig. 12d). We see that the symmetry

of the cross-correlation functions is not as good as in the oriented case. However it is now

suitable for automatic travel time measurements.

6 DISCUSSION

Many studies have highlighted the existing analogy between the spatial cross-correlation of a

wavefield generated by uncorrelated seismic sources and the time-reversal operation (see for

instance Derode et al. 2003; Larose 2004; Campillo 2006). Within this analogy, the sources

used to perform the time-reversal operation are the analog of the noise seismic sources of the

present study. Indeed, the cross-correlation function between a reference station and all other

available stations can be seen as a sequence of (1) recording at the sources a pulse emitted by

the reference station, (2) emitting the time-reversed records of the wavefield at each source,

leading to (3) a focusing of the waves onto the reference station, followed by (4) a diverging

wavefield from the reference station.

If the sources are homogeneously distributed in a surrounding path enclosing the seismic

array, then the focused wavefield obtained in step (3) corresponds to the inital pulse emitted

by the reference station in step (1) and, consequently, steps (3) and (4) are symmetrical with

respect to time-reversion.

When the sources are not homegeneously distributed in the medium, this necessarily

leads to asymmetrical cross-correlation functions because the converging (3) and diverging

(4) wavefields are not anymore symmetrical with respect to time. In that case, the focusing of

the wavefield is degraded, leading to spurious zones where the wavefield focuses outside the

reference station location. Consequently, cross-correlation (or similarly time-reversal opera-

tion) cannot be directly used to infer the properties of the medium when the sources are not

homogeneously deployed around the studied zone.

In such ill-conditioned context, Tanter et al. (2000) and Aubry et al. (2001) have proposed

to improve the focusing of ultrasonic beams in heterogeneous media with replacing the time-

reversal operation by an inverse-filter technique that imposes the wavefield to be 1 at the

precise location of the reference station and 0 elsewhere. This approach, that can be applied

when the sources are under control, leads to selecting proper eigenvectors of the matrix formed

by the signals received at the time-reversal sources. Indeed, only a portion of these eigenvectors

contain information about the propagating waves (forming the signal subspace), whereas the
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other ones are related to uncorrelated noise (i.e. the noise subspace) which is likely to produce

strong artifacts in this ill-conditionned time-reversal operation. By selecting only the signal-

related eigenvectors, Tanter et al. (2000); Aubry et al. (2001) have shown that the focusing

is improved and the converging and diverging wavefield are symmetrized. This operation can

therefore be interpreted as a projection of the recorded wavefield onto the signal subspace

(Prada & Thomas 2003). This signal subspace is useful in many applications such as high-

resolution beamforming techniques (Wax et al. 1984; Goldstein & Archuleta 1987).

The application of the inverse filter to a passive case (i.e. where the sources are not under

control) has been first done in Gallot et al. (2012) with seismic data. Instead of applying

the eigenvalue decomposition onto the matrix formed by the signals received at the sources

(consequently unknown), the authors assume the ambient seismic wavefield to be generated

by a great number of overlapping Green’s functions which are likely to be captured in sev-

eral arbitrary-defined windows of data. The authors apply the singular-value decomposition

directly onto the matrix formed by the signals received at the seismic stations (data matrix).

Despite showing similar results with our technique, their method involves to keep the whole

N ×M data matrix where the number of time segments M is often large, and to perform

the singular-value decomposition on it, inducing time- and memory-consuming computation.

Neither can this technique be applied to pre-existing cross-correlation databases.

The method presented in our study is equivalent to the passive-inverse filter proposed

in Gallot et al. (2012). In our case, we directly select the signal-related eigenvectors from

the N ×N array covariance matrix, inducing a non-negligible gain in computation compared

to Gallot et al. (2012), and making the method applicable to pre-existing cross-correlation

databases. The equalization of the covariance matrix eigen-spectrum therefore follows the idea

of improving the focusing of the cross-correlated wavefield, and acts at every station of the

seismic array simultaneously.

The equalization of the covariance matrix eigen-spectrum can also be seen as the extension

of the spectral equalization process (Bensen et al. 2007) – which operates on the Fourier

spectrum of the individual seismic traces – to the spatial domain. Indeed, each row of the

covariance matrix represents the correlated wavefield amplitude as a function of space. If

we consider an infinite array with regularly spaced elements, the covariance matrix becomes

block-Toeplitz (Gerstoft et al. 2012), meaning that each row of the covariance matrix is a

shifted version of the preceding one. In that case, the eigenvalues of the covariance matrix are

given by the Fourier transform of one single row, that can be interpreted as a spatial Fourier

transform of the correlated wavefield.
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We also presented a theoretical derivation of the eigenvalue threshold (Sec. 2.4, Eq. 9 and

Sec A). Our result is similar to the one obtained in Carrière et al. (2013) for a volume noise

geometry, where the authors considered a planar array with regularly spaced sensors. In the

present study, we additionally derived the eigenvalue-cutoff as a function of the frequency

for a surface noise geometry. Another theoretical derivation of the eigenvalue cutoff was also

derived from the random matrix theory in Menon et al. (2012) under regularly-spaced linear

array assumption, where the number of eigenvalues related to the seismic noise is obtained

from an asymptotic density of probability.

Finally, our method can also be compared with the one presented in Menon et al. (2012),

which is designed to reduce the influence of highly-coherent sources in ocean acoustics such

as passing ships. These authors developed an approach using the random matrix theory to

infer the ship-related eigenvalues, and rejected the eigenvalues according to a sequence of

hypothesis testing. The azimuthal zones where the ships are located therefore suffer from a

lack of energy after filtering, involving the needs of records of the wavefield before and after

the ship passes. Our method presents the advantage to keep the energy related to anomalously

strong sources, and just reduces their respective contributions by equalizing them with respect

to average background sources.

7 CONCLUSIONS

We have developed an approach useful to enhance Green’s function recovering from ambient

seismic noise in presence of strong seismic sources. Our approach is inspired by the passive

inverse filter presented in Tanter et al. (2001); Aubry et al. (2001); Gallot et al. (2012) and by

the spatial filter presented in Carrière et al. (2014), and can be seen as an extent of the spectral

equalization usually applied to individual seismograms (Bensen et al. 2007) to the spatial

domain. Theoretical expression for the eigenvalue-cutoff which is involved in our method

as well as in Carrière et al. (2014) is derived, in both 2-D and 3-D noise configurations. We

automatically define the eigenvalue threshold of our method as a function of the frequency from

this theoretical derivation, without any prior knowledge on the spatial distribution of the noise

seismic sources. The technique herein developed has the advantage to be directly performed

onto the array covariance matrix, and therefore, it can be applied onto pre-existing cross-

correlation databases. Finally, we propose an eigenvector-based spatial-filter to be combined

with the inverse-filter, which consider the selection of the covariance matrix eigenvectors in

order to remove unwanted seismic waves such as body waves.

We performed a numerical simulation with using the geometry of the USArray in order
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to investigate the performance of our method. We simulated the effect of a strong source

embedded in isotropic ambient noise, where the source has an amplitude 10 times higher than

the background noise. Strong bias in the travel-time measurements with an average error of

11.73% are observed on the standard cross-correlation computed from this highly anisotropic

wavefield configuration. The equalization of the covariance matrix spectrum applied to this

last case shows to be a powerful tool to attenuate the effect of the strong source. The source

amplitude is strongly attenuated while the background isotropic noise is reinforced, leading

to significantly better travel-time measurements, with overall errors of about 1.5%.

Also, we see that our method requires the knowledge of the medium slowness. Even if

the medium is inhomogeneous, we herein considered the average slowness. This is likely to

produce artifacts in the filtered cross-correlations, because the reconstruction from too many

Bessel functions implies undesired high-frequency fluctuations. A good improvement of this

approach would be obtained with using a frequency-dependent slowness model, in order to

improve the accuracy of the cutoff. Also, the definition of the average radius r̄ is important. We

here decided to take the average inter-station spacing of all possible station couples (Eq. 8).

This is likely to mainly improve the cross-correlation symmetry for the station pairs with

inter-station spacing close to r̄, whereas the ones with large inter-station spacing could be

partially degraded.

We have shown that the cross-correlation functions obtained from the data pre-processed

with temporal and spectral equalization (Bensen et al. 2007) still suffers from the presence of

strong earthquakes with both spurious coherent arrivals and asymmetry of the causal and anti-

causal parts. We equalized the covariance matrices eigen-specra of 30 days of data recorded by

the USArray, centered around the date of the 2010 M8.8 Maule earthquake. This shown up to

strongly reduce both spurious coherent arrivals and the asymmetry of the cross-correlation.

We also proposed a beamforming-based selection of eigenvectors in order to cancel out

body waves. Using beamforming analysis on eigenvectors, we reject the eigenvectors that

contain strong energy with slownesses corresponding to body waves. This eigenvector selection,

combined together with the equalization of the covariance matrix spectrum strongly improve

the cross-correlation symmetry and reduces the spurious arrivals caused by strong earthquakes.

We believe this approach is strongly attractive because it allows to perform the cross-

correlation analysis even when the wavefield does not present the required conditions that en-

sure the Green’s function retrieval. The covariance matrix eigen-spectrum equalization method

presented in our paper helps to extend the applicability of the methods based on correlations

of ambient seismic noise to cases with strongly heterogeneous distribution of seismic sources.



24 L. Seydoux et al.

It might be of particular interest when applied to monitoring seismically active regions, where

earthquakes and seismic tremors might act as strong and seismic sources whose influence can

be strongly diminished after applying the covariance matrix based equalization.
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Figure 1. Seismic stations from the US Transportable Array used in this study. The 34

seismic stations are shown with triangles on the global and on the regional maps. The seismic array

aperture is ∼350 km, and the typical spacing between neighbouring seismic stations is about 55 km.

The average interstation spacing r̄ is represented with a vector, and the circle of radius r̄ is shown with

black dashed line.
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Figure 2. Spatial equalization of a synthetic source embedded in an idealistic 2-D isotropic

seismic noise. The top panels show the covariance matrix eigenvalues, sorted in decreasing order

(i.e. the covariance matrix spectra). The corresponding beamforming is presented in each case at the

bottom. They are obtained from the covariance matrix in each case with Eq. 10. We fixed the slowness

s0 = 0.25 s/km, and the period T = 50 seconds. (a) and (d) idealistic 2-D seismic noise obtained

from Eq. 11. (b) and (e) idealistic 2-D noise plus a 10 times higher seismic source located at azimuth

135◦. (c) and (f) case (b/e) where the covariance matrix is reconstructed from its first 11 eigenvectors

with the corresponding eigenvalues set to 1.
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Figure 3. Numerical setup of the 2D acoustic finite-differences simulation. (a) Locations

of the seismic stations (blue triangles) and of the seismic sources (red stars). The velocity model is

represented in colorscale with the reference velocity v0 = 4 km/s. (b) Ricker pulse r(t) used to obtain

the source-to-receiver numerical Green’s function between the sources and the receivers (see equation

13) (c) Ricker pulse Fourier transform R(f) of the pulse signal r(t) shown in (b).
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Figure 4. Numerical inter-station cross-correlation functions (left) and corresponding

plane-wave beamforming (right). The cross-correlation functions are computed from Eq. 14, and

are bandpass-filtered between 12.5 and 50 seconds. The beamforming analysis is performed at T = 54.6

seconds. (a) Isotropic case, where the seismic sources are evenly distributed with respect to the az-

imuth and have equal amplitude. The limits of the amplitude mask are indicated with black dashed

lines. (b) Anisotropic case, where all sources have the same amplitude except one located at azimuth

158◦ (corresponding to the Maule earthquake azimuth, see Fig. 8). This case simulates a strong source

embedded in ambient and isotropic seismic noise. (c) Cross-correlations obtained after equalization of

the covariance matrix illustrated in (b) with using Eq. 9. (d-f) beamforming analyses corresponding

to cases (a-c) respectively.
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Figure 5. Numerical cross-correlation functions obtained at one station pair. The selected

station pair is highlighted with black triangles in the inset. The amplitude mask used for this specific

station pair is represented with a gray line. (a) Cross-correlation functions. The black dashed line

shows cross-correlation obtained from an isotropic distribution of sources. The red line shows the

cross-correlation from a distribution with one dominating source. The blue line shows the result of

applying the equalization of the covariance matrix spectrum to the anisotropic distribution of sources.

(b) Hilbert envelopes of the cross-correlation functions shown in (a). The travel times estimated from

the envelope maxima are represented with vertical lines.
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Figure 6. (a) travel-times measured from the cross-correlation functions presented in Fig. 4b, where a

strong coherent source at azimuth 158◦ has an amplitude 10 times higher than the ones compared with

“reference” travel times measured with an isotropic distribution of sources. (b) travel-times measured

from the cross-correlation function presented in Fig. 4d, where the covariance matrix spectrum has

been equalized. The average error (Eq. 18) in travel-times measurement is indicated in each case.
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Figure 7. Inversion of the travel-times measured from the numerical cross-correlation

function presented in Fig. 4a, b and d. The input velocity model is presented in (a) with respect

to the average velocity of the medium v0 = 4 km/s. The tomographic results are respectively obtained

from (b) an isotropic source configuration, (c) with a strong source illuminating at θ0 = 158◦ and (d)

after the spatial equalization applied on (c).
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Figure 8. (a) Magnitude and date of M ≥ 5 earthquakes that occurred in 2010, obtained from

the U.S. Geological Survey database (http://earthquake.usgs.gov/earthquakes/search/). The

colored boxes indicate two time-segments (30-days long each) over which we analyzed the wavefield

isotropy. The yellow box if free from earthquakes with magnitudes higher than 6.3. The red box contains

the Maule M8.8 megathrust earthquake which corresponding epicenter location is shown with red star

in (b). (b) Azimuthal global map centered on the USArray barycenter (black triangle). We indicate

the direction of arrival of Rayleigh waves incoming from the Maule earthquake.
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Figure 9. Beamforming computed over the two windows of data shown in Fig. 8. The data

were pre-processed with temporal and spectral equalizations. The beamforming output is averaged

between 40 and 50 seconds of period. (a) Yellow window, where no earthquake of magnitude higher

than 6.3 occured (b) Red window, which contains the signal related to the M8.8 Maule earthquake.
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Figure 10. Spatial equalization of the 2010 M8.8 Maule earthquake. Cross-correlation func-

tions obtained between all the 34 seismic station, with respect to the inter-station distance. The

cross-correlations are bandpass-filtered between 25 and 100 seconds. (a) Cross-correlation obtained

with the temporal and the spectral normalization technique proposed by Bensen et al. (2007). (b)

Same as (a) obtained from the equalized covariance matrix. (c) Same as (b) with the additional eigen-

vector selection. The eigenvectors with energy inside the 0.15 km/s slowness circle are systematically

rejected. (d-f) Beamforming analyses of cases (a-c) respectively, averaged between 41 and 51.2 seconds

of period.
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Figure 11. Selection of the covariance matrix eigenvectors that are related to Rayleigh

waves. Each plot shows the beamforming performed on one eigenvector of the covariance matrix

computed from the M8.8 Maule earthquake. The full-rank beamforming is presented in the top-left

plot. In each case, the number corresponds to the eigenvector index. The dashed circle corresponds to

the slowness circle of rejection γthr and the rejected eigenvectors are indicated with red labels.
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Figure 12. Comparison between the standard cross-correlations (a, c) and the cross-

correlations obtained after equalizing the covariance matrices and selecting the eigen-

vectors (b, d). The selected station pairs are parallel (a, c) and orhogonal (c, d) to the earthquake

azimuth, with a tolerance angle of 10◦, as indicated in the inset in (a) and (b).
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APPENDIX A: THEORETICAL DERIVATION OF THE EIGENVALUE

CUTOFF

A1 Eigenvalue cutoff with infinitely dense seismic array

Let us consider the frequency-domain homogeneous wave equation (Helmholtz equation) given

by (∇2 + k2)u = 0, where ∇2 is the Laplace operator and k = 2πfγ is the wavenumber

that depends on the frequency f and the slowness γ. In our case, the seismic wavefield is

sampled on a typical surface Ω covered by the seismic array. Notice that we implicitely assume

the seismic array to be infinitely dense, the artifacts related to the sampling quality being

detailed in the next section. It can be shown (Walsh & Vekua 1969) with considering simple

geometry for Ω, that only a few Bessel functions contribute to an adequate description of the

seismic wavefield. Indeed, we can locally approximate the wavefield ui(f) at any point ri with

cylindrical coordinates (ri, θi) of the medium in the 2-D case (i.e. that considers suface waves)

with the following truncated summation

ui(f) ≈
L∑

`=−L
α`J`(2πfγri)e

ı`θi , (A.1)

where α` is the `-order coefficient of the wavefield decomposition and J`(x) is the `-order

Bessel function of the first kind. A similar approximation is obtained in the 3-D case (i.e.

volume noise where a point ri is described with spherical coordinates (ri, θi, φi)) with

ui(f) ≈
L∑
`=0

∑̀
m=−`

α`mj`(2πfγri)Y`m(θi, φi) , (A.2)

where α`m is the `m-order coefficient of the wavefield decomposition, j`(x) is the `-order

spherical Bessel function of the first kind, and Y`m(θ, φ) is the sperical harmonic function.

The value of the truncation index L is explicitly obtained in Moiola et al. (2011) and is

related to the frequency f , the slowness γ of the medium and the typical radius r̄ of the

domain Ω as

L = dkr̄e = d2πfγr̄e (A.3)

where dxe is the next integer greater than x and r̄ is the average interstation distance defined

in Eq. 8.

We see from Eqs. A.1 and A.2 that the number of degrees of freedom L of the wavefield
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differs in the 2-D and 3-D cases and are given by

L
2D = 2L+ 1

L3D = (L+ 1)2
. (A.4)

We notice that the number of degrees of freedom of a volumic wavefield L3D is greater than

the one of a surface noise L2D. As L is frequency-dependent, the truncation index can be

explicitly written with respect to the frequency

L
2D(f) = 2d2πfγr̄e+ 1

L3D(f) = (d2πfγr̄e+ 1)2
(A.5)

The number of degrees of freedom can be understood more intuitively from the following:

if the wavefield is recorded on a limited space region Ω, the Bessel functions of rank ` > L

do not contribute to the description of the seismic wavefield because J`(kr) ≈ 0 when r < r̄.

The corresponding coefficients α` will therefore be close to 0.

This is illustrated in Fig. A1a, where the Bessel functions of order −20 < ` < 20 are shown

in colorscale as a function of the radial order ` in vertical axis, with respect to the typical

radius r of the domain Ω. In the present case, the we set f = 0.02 Hz and γ = 0.25 s/km,

and we vary the typical radius r from 0 to 500 km in order to observe the behaviour of the

truncation index L as a function of the spatial extent of the seismic array (in black solid line).

We clearly see that L delimits the region where the Bessels functions start to be nonzero

anymore.

The number of degrees of freedom L2D then corresponds to the number of Bessel functions

to take into account at the given frequency, slowness and typical radius. We can examine the

particular case of the USArray geometry presented in Sec. 3, which has a typical radius

r̄ = 162.1 km. We see that in This case, L = 6 as f0 = 0.02 Hz and γ = 0.25 s/km. Using

Eq. A.4, this lead to L2D = 13.

We can also observe the variation of L2D with respect to the frequency in Fig. A1b while

γ = 0.25 s/km and with the typical radius r̄ = 161.2 km of the USArray. We observe that the

degrees of freedom of the ambient wavefield is increasing with the increasing frequency, which

is an observed behaviour in Gerstoft et al. (2012); Menon et al. (2012); Seydoux et al. (2016a).

We also notice that L2D saturates to N at frequencies higher than 0.1 Hz, because the number

of array elements is limiting the number of degrees of freedom that we can investigate.
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A2 Eigenvalue cutoff with discrete seismic array

The theoretical rank L introduced in Eq. A.5 tends to infinity with respect to the increasing

frequency. This is a natural consequence of the underlying assumption of infinitely dense

seismic array, that lead to infinitely large covariance matrix. A discrete seismic array with

finite number N of seismic stations leads to finite-sized N ×N covariance matrix that can be

obviously equalized at maximum with an eigenvalue cutoff L = N . Yet, taking L = N induces

∆̂ = I, leading to the following equalized covariance matrix:

Ĉ = Ψ∆̂Ψ† = ΨΨ† . (A.6)

The fundamental property of the eigenvalue decomposition implies that ΨΨ† = I because Ψ

is a normal matrix. Saturating L to N therefore induces the equalized covariance matrix to

be equal to the identity matrix and, as a consequence, to miss out any relevant information

spanned by the off-diagonal terms.

In this high-rank regime, we can then wonder if any optimal eigenvalue cutoff can be

found. In order to infer it, we investigate the reconstruction quality of the idealist covariance

matrix from the equalized anisotropic covariance matrix for various eigenvalue cutoffs L and

with respect to the frequency f . We use the synthetic test presented in Section 4.2 where

we consider the theoretical expression of the isotropic covariance matrix Cideal(f) in a homo-

geneous medium (Eq. 11), and the anisotropic covariance matrix Csource(f) which consist in

the isotropic seismic noise plus a planewave with large amplitude (Eq. 12). We then equalize

the anisotropic covariance matrix at each frequencies with all eigenvalue cutoffs L, namely

Cequalized(L, f).

As a reconstruction quality measurement, we define the similarity coefficient s(L, f) be-

tween the equalized anisotropic covariance matrix and the isotropic covariance matrix such

as

s(L, f) =

∣∣∣∑i 6=j C
ideal
ij (f)C∗ equalized

ij (L, f)
∣∣∣(∑

i 6=j |C ideal
ij (f)|2 ·

∑
i 6=j |C

equalized
ij (L, f)|2

)1/2
. (A.7)

Notice that we focused onto the off-diagonal terms because they are related to the propagating

wavefield, which are of main interested for tomography.

We perform the synthetic test with a slowness γ0 = 0.25 s/km, and we vary the eigenvalue

threshold L from 0 and N = 34 for the frequencies between 0.001 Hz to 1 Hz. The source has

an amplitude 10 times higher than the backround noise. The similarity coefficient s(L, f) is

presented in colorscale in Fig. A2a.
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First, we observe that the theoretical eigenthreshold derived from Appendix A1 (shown in

black solid line) correlates well with the maximal correlation coefficient (black circles), contri-

ubting to support our theory at low frequencies. The similarity then reaches a plateau at high

frequencies, close to N/2. As an indicator, the maximal reachable quality of reconstruction

obtained at each maxima shown in Fig. A2a is indicated as a function of the frequency in

Fig. A2b.

From these observations, we can finally reformulate Eq. A.5 for the two-dimensional case

so that:

L2D(f) = min {2d2πfγr̄e+ 1, N/2} , (A.8)

and similarly,

L3D(f) = min
{

2(d2πfγr̄e+ 1)2, N/2
}
. (A.9)

We consider the frequency-dependent L as the eigenvalue cutoff in our method. The use

of L2D or L3D depends on the desired analysis that aims at being performed on the seismic

records. We also notice that L is expressed with the slowness of the medium, which is not

precisely known. A rough estimation of the average slowness γ0 is neverthless sufficient to

extend our approach to the heterogeneous case.
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Figure A1. Degrees of freedom of the seismic wavefield illustrated with the Fourier-

Bessel decomposition (2D). (a) Bessel functions (in colorscale) of the first kind J`(k0r), where the

wavenumber k0 = 2πf0γ0 is obtained with the frequency f0 = 0.02 Hz and the slowness γ0 = 0.25

s/km. The truncation index L is shown with the black solid line. The vertical dashed line indicates

the typical radius r̄ of the USArray geometry investigated in Secs. 3, 4 and 5. The horizontal dashed

lines show the upper (lower) limit above (below) which the Bessel functions do not contrinute to the

wavefield reconstruction. The number of contrubuting functions L2D defines the number of degrees

of freedom with respect to the given k0 wavenumber. (b) Frequency dependance of the truncation

index L2D with taking the typical radius r̄. The dashed lines indicate the case presented in (a). The

truncation index is the total number of sensors of the considered seismic array (34 in our case, see the

horizontal dotted line) when the frequency is higher than 0.01 Hz.
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Figure A2. Analysis of the maximal eigenthreshold. (a) Similarity coefficient (in colorscale)

between the off-diagonal terms of the ideal covariance matrix Cideal(f) and the equalized anisotropic

covariance matrix Cequalized(L, f) for various eigenvalue thresholds L2D. The theoreical eigenthreshold

derived from Eq. A.9 is indicated in dashed line, and the points for which the maximal coefficient

value is obtained are indicated with black solid line. (b) Similarity coefficient for the maximal values

extracted in (a).


