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Abstract The seismic signals generated by rockfalls can provide information on their dynamics and
location. However, the lack of field observations makes it difficult to establish clear relationships between
the characteristics of the signal and the source. In this study, scaling laws are derived from analytical impact
models to relate the mass and the speed of an individual impactor to the radiated elastic energy and the
frequency content of the emitted seismic signal. It appears that the radiated elastic energy and frequencies
decrease when the impact is viscoelastic or elastoplastic compared to the case of an elastic impact. The
scaling laws are validated with laboratory experiments of impacts of beads and gravels on smooth thin
plates and rough thick blocks. Regardless of the involved materials, the masses and speeds of the impactors
are retrieved from seismic measurements within a factor of 3. A quantitative energy budget of the impacts
is established. On smooth thin plates, the lost energy is either radiated in elastic waves or dissipated in
viscoelasticity when the impactor is large or small with respect to the plate thickness, respectively. In
contrast, on rough thick blocks, the elastic energy radiation represents less than 5% of the lost energy.
Most of the energy is lost in plastic deformation or rotation modes of the bead owing to surface roughness.
Finally, we estimate the elastic energy radiated during field scale rockfalls experiments. This energy is
shown to be proportional to the boulder mass, in agreement with the theoretical scaling laws.

1. Introduction

Rockfalls represent a major natural hazard in steep landscapes. Because of their unpredictable and spon-
taneous nature, the seismic monitoring of these gravitational instabilities has raised a growing interest for
risks assessment in the last decades. Recent studies showed that rockfalls can be automatically detected and
localized with high precision from the seismic signal they generate [Suriñach et al., 2005; Deparis et al., 2008;
Dammeier et al., 2011; Hibert et al., 2011, 2014a]. A burning challenge is to obtain quantitative information on
the gravitational event (volume, propagation velocity, extension, etc.) from the characteristics of the associ-
ated seismic signal [Norris, 1994; Deparis et al., 2008; Vilajosana et al., 2008; Favreau et al., 2010; Dammeier et al.,
2011; Hibert et al., 2011, 2014a; Moretti et al., 2012, 2015; Yamada et al., 2012].

Some authors found empirical relationships between the rockfall volume and the maximum amplitude of
the signal or the radiated seismic energy [Norris, 1994; Hibert et al., 2011; Yamada et al., 2012]. The precursory
work of Norris [1994] on rockfalls of large volume > 104 m3 at Mount St. Helens showed that the maximum
amplitude of the emitted signal depends linearly on the rockfall volume. This is in agreement with the observa-
tions of Yamada et al. [2012] on landslides triggered in Japan by Typhoon Talas in 2011. The authors observed
that the integral of the squared signal amplitude measured at 1 km from the source varied as the square the
landslide volume. In contrast, Hibert et al. [2011] showed that the seismic energy emitted by rockfalls is propor-
tional to their volume in the Dolomieu crater of the Piton de la Fournaise volcano, Réunion Island. Moreover,
Dammeier et al. [2011] used a statistical approach and estimated the volume V of several rockfalls in the central
Alps from the measurement of the duration ts, envelope area EA, and peak amplitude PA of the generated seis-
mic signal. For 20 well-constrained events, they found the empirical scaling law: V ∝ t1.0368

s EA−0.1248PA1.1446.
The volumes estimated with this relation were close to the measured ones, but the results were sensitive to
the distance of the seismic stations from the events.
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Other surveys investigated the ratio of the radiated seismic energy Wel over the potential energy ΔEp lost
by the rockfalls from initiation to deposition [Deparis et al., 2008; Hibert et al., 2011, 2014a; Lévy et al., 2015].
Deparis et al. [2008] studied 10 rockfalls that occurred between 1992 and 2001 in the French Alps and esti-
mated that the ratio Wel∕ΔEp was between 10−5 and 10−3. Hibert et al. [2011, 2014a] observed that the ratios
of the seismic energy Wel radiated by the rockfalls in the Dolomieu crater over their potential energy lost ΔEp

varied from 5.10−5 to 2.10−3. Finally, Lévy et al. [2015] found Wel∕ΔEp≈1.1.10−5 –2.8.10−5 for pyroclastic and
debris flows that occurred on the Souffrière Hills volcano in Montserrat Island, Lesser Antilles. Most of the
aforementioned studies focused on a specific rockfall site [Norris, 1994; Deparis et al., 2008; Dammeier et al.,
2011; Hibert et al., 2011, 2014a; Yamada et al., 2012; Lévy et al., 2015]. It is, however, difficult to test the devel-
oped techniques on other sites because only a few of rockfall areas are nowadays simultaneously seismically
and optically monitored.

Because gravitational events are very complex, it is still not clear what parameters controls their seismic
emission. The seismic signals generated by rockfalls on the field are partially composed of waves emitted
by individual impacts of boulders, triggering high-frequency noise, typically higher than 1 Hz [e.g., Deparis
et al., 2008; Vilajosana et al., 2008; Helmstetter and Garambois, 2010; Hibert et al., 2014b; Lévy et al., 2015] and
by long-period stresses variations owing to the mass acceleration and deceleration over the topography,
responsible for lower frequencies in the signal (<1 Hz) [e.g., Kanamori and Given, 1982; Favreau et al., 2010;
Allstadt, 2013]. To start the work on understanding the seismic emission of rockfalls, we focus here on the
seismic signal generated by impacts.

The dynamics of impact can be described at first order by the classical model proposed by Hertz [1882] that
gives the analytical expression of the force of impact of an elastic sphere on a solid elastic surface [see Johnson,
1985]. From the comparison of the impact forces and durations measured from the emitted seismic signal
with that predicted by Hertz [1882], Buttle and Scruby [1990] and Buttle et al. [1991] managed to retrieve the
diameter of submillimetrical particles impacting a thick block. However, their computation was based on the
direct compressive wave, measured at the opposite of the impact on the target block. Their configuration can
therefore not be exported to field context. Also based on Hertz’s [1882] theory, Tsai et al. [2012] expressed the
long-period power spectral density generated by the impacts of sediments on the bed of rivers as a function
of the river parameters such the particle size distribution, the impact rate, and the bed load flux. From seis-
mic measurements of Burtin et al. [2008] on trans-Himalayan Trisuli River, Tsai et al. [2012] were then able to
quantitatively deduce the bed load flux.

In this paper, we adopt a similar approach. The basic idea is to derive from Hertz’s [1882] model analytical
scaling laws relating the radiated elastic energy and the frequencies of the seismic signal generated by an
impact to the mass and the speed of the impactor. These laws can then be inverted to deduce the impact
parameters from a measurement of the emitted seismic signal. Note that Tsai et al. [2012] assumed for their
analytical model that the impact duration was instantaneous because they focused on signals of long periods
compared with this duration. On the contrary, we do not assume an instantaneous impact here because we
try to use the whole spectrum content. Indeed, in order to robustly estimate the impact parameters from the
emitted signal using our scaling laws, we need to determine the absolute energy radiated in elastic waves
and, therefore, the entire amplitude spectrum of the seismic signal generated by the impact. This implies
(1) to record signals with sampling periods much smaller than the impact duration and (2) to know well the
elastic properties of the impactor and of the substrate, i.e., their elastic modulii, their density, the type of mode
excited in the substrate after an impact, its dispersion, and how its energy attenuates with increasing distance
from the source.

These two conditions are not easy to address in the field because usual sampling times are of the order of the
typical impact durations (∼0.01 s) and because of the strong heterogeneity of the ground. Therefore, in order
to test our analytical scaling laws, we perform controlled laboratory experiments of impacts of spherical beads
on thin plates with an ideal smooth surface, then on rough thick blocks, i.e., in a context similar to that of the
field. A series of impact experiments is also conducted with gravels to quantify how the relations between
impact properties and signal characteristics change when the impactor has a rough surface, which is a more
realistic case, i.e., closer to what is observed for natural rockfalls.

During an impact, a significant part of the impactor’s energy can be lost in inelastic processes such as
plastic, i.e., irreversible, deformation of the impactor or the ground [Davies, 1949] or viscoelastic dissipation in
the vicinity of the impact [Falcon et al., 1998]. These losses are not considered in Hertz’s [1882] elastic impact
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model. In this paper, we use analytical models of viscoelastic and elastoplastic impact to estimate how the
frequencies of the emitted vibration and the radiated elastic energy deviate from that predicted using Hertz’s
[1882] theory when inelastic dissipation occurs. Using these models, we interpret the discrepancy observed
between the measured values in our experiments and those predicted by the elastic model of Hertz [1882].
Another advantage of the laboratory experiments is that the total energy lost during the impact can be easily
measured from the velocity change of the impactor before and after the impact. We can then establish a quan-
titative energy budget among the energy radiated in elastic waves and that dissipated in inelastic processes.
This allow us to better understand the process of wave generation by an impact and to roughly extrapolate
what should be the relative importance of the different loss processes for natural rockfalls.

This paper is structured as follows. In section 2, we recall the theory for elastic, viscoelastic, and elastoplastic
impacts of a sphere on a plane surface and we derive the analytical scaling laws from this theory. The exper-
imental setup is presented in section 3. In section 4, we test experimentally the scaling laws established in
section 2 and retrieve the masses and speeds of the impactors from the measured seismic signals. In addition,
we establish the energy budget of the impacts among elastic and inelastic losses and observe how this budget
varies on smooth thin plates and rough thick blocks when the bead mass and the elastic parameters change.
In section 5, the discrepancy of the experimental results with the theory is discussed. Finally, the analytical
scaling laws demonstrated in this paper are compared with empirical relations observed in drop experiments
of large boulders in a natural context. We identify the issues that should be overcome in order to apply our
scaling laws to natural impact situations.

2. Theory: Relations Between Impact Parameters and Seismic Characteristics

The vibration displacement u(r, t) at the distance r from an impact is given by the time convolution of the
force F(rs, t) applied to the ground at position rs with Green’s function ̄̄G(r, rs, t) of the structure where the
wave propagates [Aki and Richards, 1980]:

u(r, t) = ̄̄G(r, rs, t) ∗ F(rs, t), (1)

where ∗ stands for the time convolution product. In our experiments, we only have access to the vibration
acceleration in the direction normal to the surface az(r, t). In the time Fourier domain, this acceleration is
given by

Ãz(r, f ) = −(2𝜋f )2G̃zz(r, f )F̃z(f ), (2)

where f is the frequency and F̃z(f ) is the time Fourier transform of the vertical impact force Fz(t). The expres-
sion of Green’s function G̃zz(r, f ) is different when the impact duration is greater or smaller than the two-way
travel time of the emitted wave in the structure thickness, i.e., for impacts on thin plates and on thick blocks,
respectively. A plate of thickness h vibrates normally to its surface because the fundamental A0 mode of Lamb
carries most of the energy [Royer and Dieulesaint, 2000; Farin et al., 2015]. The module of Green’s function of
this mode of vibration can be approximated by [e.g., Goyder and White, 1980]:

|G̃zz(r, f )| = 1
8Bk2

√
2
𝜋kr

, (3)

where k is the wave number, B = h3Ep∕12(1 − 𝜈2
p) is the bending stiffness, and Ep and 𝜈p are the Young’s

modulus and the Poisson ratio of the impacted structure, respectively. At low frequencies, i.e., for kh << 1, the
wave number k is related to the angular frequency 𝜔 by k4 = 𝜔2𝜌ph∕B, where 𝜌p is the plate density.

In contrast, an impact on a thick block generates compressive, shear, and Rayleigh waves [Miller and Pursey,
1955; Aki and Richards, 1980]. For kr >> 1, i.e., in far field, the displacement mainly results from Rayleigh waves
and Green’s function can be approximated by [Miller and Pursey, 1955; Farin et al., 2015]

|G̃zz(r, f )| ≈ 𝜉2𝜔

2𝜇cP

√
x0(x2

0 − 1)

f ′0(x0)

√
2cP

𝜋𝜔r
, (4)
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Figure 1. (a) Schematic showing the penetration depth 𝛿z of a sphere of radius R on a plane surface during an impact.
Geometrically, the surface of contact is a circle of radius a. Normalized force of impact Fz(t∕t0)∕F0 for (b) different values
of the viscoelastic parameter 𝛼 (or 𝜆Z for Zener’s [1941] theory; see section 2.1.1.2) and for (c) different values of the
stresses ratio PY∕P0. F0 and t0 = Tc∕2 are, respectively, the force and the time at maximal compression during an elastic
impact, i.e., for 𝛼 = 0 and PY∕P0 = 1.

where 𝜇 is the shear Lamé coefficient, cP is the compressional wave speed, 𝜉=
√

2(1 − 𝜈p)∕(1 − 2𝜈p),
f0(x) = (2x2 − 𝜉2)2 − 4x2

√
(x2 − 1)(x2 − 𝜉2), and x0 is the real root of f0.

In this section, we derive analytical scaling laws that relate the energy radiated in elastic waves and the char-
acteristic frequencies of the vibration Ãz(r, f ) emitted by an impact to the impact parameters (mass m and
speed Vz). Because the vibration Ãz(r, f ) is controlled by the impact force F̃z(f ) (equation (2)), the scaling laws
are different when the impact is elastic or when viscoelastic dissipation or plastic deformation occur. Let us first
recall the expression of the impact force for an elastic impact and how it changes for an inelastic impact. Note
that we do not use any elastoviscoplastic model of impact here because elastic energy radiation, viscoelastic
dissipation, and plastic deformation are never simultaneously significant in our experiments, even though it
could be the case on the field. For example, in certain cases, viscoelastic and plastic losses are negligible and
an elastic impact model is sufficient to describe the energy transfer.

2.1. Impact Models

2.1.1. Elastic Impact Model
2.1.1.1. Hertz’s Model
Hertz [1882] gives the force of elastic contact of a sphere of mass m on a plane as a function of their
interpenetration depth 𝛿z(t) (Figure 1a):

Fz(t) = −K𝛿3∕2
z (t), (5)

where

K = 4
3

R1∕2E∗, (6)

with R, the sphere radius and 1∕E∗ = (1 − 𝜈2
s )∕Es + (1 − 𝜈2

p)∕Ep, where 𝜈s, 𝜈p, Es, and Ep are, respectively, the
Poisson’s ratios and the Young’s moduli of the constitutive materials of the sphere and the impacted plane.

During an impact, the displacement of the center of mass of the sphere is equal to the interpenetration 𝛿z(t).
Neglecting the gravity force, the equation of motion of the sphere is then

m
d2𝛿z(t)

dt2
= −K𝛿3∕2

z (t). (7)
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The solution of equation (7) is of the form 𝛿z(t) = 𝛿z0f (t∕Tc). The maximum interpenetration depth 𝛿z0 and
the impact duration Tc are, respectively, given by [Johnson, 1985]

𝛿z0 =

(
5mV2

z

4K

)2∕5

, (8)

and

Tc ≈ 2.94
𝛿z0

Vz
≈ 2.87

(
16m2

9K2Vz

)1∕5

, (9)

where Vz is the impact speed.

The maximum value of the impact force is therefore, according to equation (5)

F0 = K𝛿3∕2
z0 = K

(
5mV2

z

4K

)3∕5

. (10)

In the following, the interpenetration depth 𝛿z(t), the time t and the force Fz(t) are, respectively, scaled by
𝛿z0, 𝛿z0∕Vz , and F0, which contain all the information on the impact characteristics.
2.1.1.2. Hertz-Zener’s Model for Impacts on Thin Plates
Hertz’s [1882] model (equation (8)) is valid provided that the energy radiated in elastic waves during the impact
represents a small proportion of the impact energy 1

2
mVz

1∕2 [Hunter, 1957; Johnson, 1985]. This is not the case
when the thickness of the impacted structure is around or lower than the diameter of the impactor, i.e., for
impacts on thin plates and membranes [e.g., Zener, 1941; Farin et al., 2015]. When the energy lost in plate
vibration during the impact is not negligible, Zener [1941] proposed a more exact description than Hertz’s
[1882] model of the interaction between the sphere and the plate’s surface. One has to distinguish the sphere
displacement z, given by

m
d2z(t)

dt2
= −Fz(t), (11)

from the plate’s surface displacement uz at the position of the impact, whose time derivative is

duz(t)
dt

= YelFz(t), (12)

where Yel is the real part of the time derivative of Green’s function at the impact position ℜ
(

dGzz(r0, t)∕dt
)

,
i.e., the radiation admittance. This function is given by [Goyder and White, 1980] for plates

Yel =
1

8
√

B𝜌ph
, (13)

with B, the bending stiffness, and h, the plate thickness. In these equations, the impact force Fz(t) follows
Hertz’s [1882] theory (equation (5)).

The difference of equation (11) and the derivative of equation (12) gives the following equation for the relative
movement of the sphere and of the substrate, i.e., the interpenetration 𝛿z(t) = z(t) − uz(t), in dimensionless
form with 𝛿∗ = 𝛿z∕𝛿z0 and t∗ = Vzt∕𝛿z0:

d2𝛿∗

dt∗2
= −5

4

(
𝛿∗3∕2 + 𝜆Z

d𝛿∗

dt∗
𝛿∗1∕2

)
, (14)

with

𝜆Z ≈ 0.175
E∗2∕5

𝜌
1∕15
s

√
B𝜌ph

m2∕3V1∕5
z . (15)

In equation (14), we retrieve the impact model of Hertz [1882] (equation (7)) with a corrective term that
depends on the parameter 𝜆Z . This corrective term becomes negligible when the thickness h of the structure
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is much larger than the diameter d of the impactor because the parameter 𝜆Z tends toward 0 [Zener, 1941].
Therefore, for impacts on elastic half-spaces, i.e., on thick blocks, the corrective term disappears and the model
of Zener [1941] (equation (14)) matches with that of Hertz [1882] (equation (7)). As a consequence, this model
is only relevant for impacts on thin plates.

Equation (14) is solved numerically for different values of𝜆Z with the initial conditions 𝛿∗(0)= 0 and d𝛿∗

dt∗
(0) = 1.

The impact force Fz(t)∕F0 = 𝛿∗3∕2 is shown in Figure 1b. When 𝜆Z increases, i.e., when m and Vz increase,
the force profile loses its symmetry with respect to its maximum, its amplitude decreases, and its duration
increases. For an inelastic coefficient 𝜆Z = 0.25, the force is only slightly affected. Practically, 𝜆Z is always
smaller than 0.5 in our experiments.
2.1.2. Viscoelastic Impact Model
Viscous dissipation is related to the viscosities of the materials involved in the impact and can be described as
a heat loss. Viscoelastic solids are often represented by a spring and a dashpot in parallel (Kelvin-Voigt model).
Hertz’s [1882] theory has been extended to viscoelastic impacts, adding a force Fdiss(t) in equation (7) to model
viscous dissipation [Kuwabara and Kono, 1987; Falcon et al., 1998; Ramírez et al., 1999]:

Fdiss(t) = −3
2

DK
d𝛿z(t)

dt
𝛿

1∕2
z (t), (16)

with D, a characteristic time depending on the materials viscosities and elastic constants [Hertzsch et al., 1995;
Brilliantov et al., 1996; Ramírez et al., 1999]. The expression of D is only given in the literature in case when the
sphere and the plane have the same elastic parameters E and 𝜈:

D = 2
3

𝜒2

(𝜒 + 2𝜂)
(1 − 𝜈2)(1 − 2𝜈)

E𝜈2
, (17)

where 𝜒 and 𝜂 are the bulk and shear viscosities, respectively. We cannot measure these two last parameters
in our experiments, and they are not tabulated in our frequencies range of interest; therefore, D will be an
adjustable parameter.

The dimensionless equation of motion for a viscoelastic impact is then

d2𝛿∗

dt∗2
= −5

4

(
𝛿∗3∕2 + 𝛼

d𝛿∗

dt∗
𝛿∗1∕2

)
, (18)

which is the same expression as for Zener’s [1941] model (equation (14)) but with a different parameter

𝛼 = 3
2

D
Vz

𝛿z0
≃ 1.4D

E∗2∕5

𝜌
1∕15
s

V1∕5
z

m1∕3
, (19)

the viscoelastic parameter [Ramírez et al., 1999]. For 𝛼 = 0 (i.e., D = 0), equation (18) matches with equation (7)
for elastic impacts.

Because equations (14) and (18) are identical, when𝛼 increases, the force profile varies exactly the same way as
when𝜆Z increases in Zener’s [1941] model (Figure 1b). However, note that the corrective terms to Hertz’s [1882]
model in the viscoelastic and Zener’s [1941] models have a different physical origin. The viscoelastic corrective
term is due to the fact that the impactor and the ground have an intrinsic viscosity [Falcon et al., 1998]. This
term is stronger when the mass m, or diameter d, of the sphere decreases (equation (19)). On the contrary,
the corrective term of Zener’s [1941] model comes from the fact that a larger amount of the impactor’s kinetic
energy is transferred into plate vibration during the impact when the sphere’s diameter d is large compared to
the plate thickness h [Zener, 1941] (equation (15)). We can therefore assume that the viscoelastic and Zener’s
[1941] impact models are never simultaneously effective.
2.1.3. Elastoplastic Impact Model
Plastic (i.e., not reversible) deformations result from irreversible structural modifications which occur when the
pressure on the contact area P(t) = Fz(t)∕2𝜋R𝛿z(t) reaches the dynamic yield strength PY = 3Yd of the material,
where Yd is the dynamic yield stress of the softest material [Crook, 1952; Johnson, 1985]. Plastic deformation
can be evidenced by the apparition of a crater at the impact position. The energy lost to create this crater
modifies the shape of the impact force with respect to the case of an elastic or viscoelastic impact. A model
was proposed by Troccaz et al. [2000] to describe the evolution of the impact force when the limit of elastic
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behavior is exceeded. This model is based on the hypothesis that only the sphere or the structure deforms
plastically. Such an impact is composed of three successive phases:

1. The impact is elastic while P(t) < PY and the impact force F(t) follows equation (5).
2. When P(t) ≥ PY the deformation is fully plastic and the force expression becomes Fz(t) = −2𝜋RPY𝛿z(t) until

the force reaches a maximum Fmax, which is smaller than the maximum value F0 for an elastic impact.
3. The rebound is elastic with Fz(t) = Fmax

(
(𝛿z(t) − 𝛿r)∕(𝛿max − 𝛿r)

)3∕2
, where 𝛿max is the maximum inter-

penetration reached and 𝛿r is the residual deformation after plastic deformation, which is neglected
(i.e., considered to be 0) in the following.

The dimensionless equation of motion during plastic deformation (phase 2) is then, if 𝛿z(t) and time t are,
respectively, scaled by 𝛿z0 and 𝛿z0∕Vz ,

d2𝛿∗

dt∗2
= −5

4

PY

P0
𝛿∗, (20)

where P0 is the maximum stress during Hertz’s elastic impact:

P0 =
K𝛿3∕2

z0

2𝜋R𝛿z0
= 2

3𝜋

(5
4

)1∕5
𝜌

1∕5
s E∗4∕5V2∕5

z . (21)

Equation (20) depends only on the stresses ratio PY∕P0 that is independent of the impactor mass m. When this
ratio is greater or equal to 1, the impact is purely elastic. The amplitude of the impact force decreases as the
stresses ratio PY∕P0 decreases (Figure 1c). Both the duration of the impact and the time to reach the maximum
amplitude increase for an elastoplastic impact with respect to the elastic case.

2.2. Analytical Scaling Laws
The seismic signal generated by an impact can be characterized by the radiated elastic energy Wel and by a
frequency. Here we relate analytically these seismic characteristics with the mass m and the speed Vz of the
impactor using the impact models presented above.

2.2.1. Radiated Elastic Energy
The energy Wel radiated in elastic waves is the work done by the impact force Fz(t) during the impact, i.e.,

Wel=̂∫
+∞

−∞
Fz(t)

duz(t)
dt

dt = ∫
+∞

−∞
|F̃z(f )|2Ỹel(f )df , (22)

according to Parceval’s theorem, where duz(t)
dt

is the vibration speed at the impact position (equation (12)) and
Ỹel(f ) is the time Fourier transform of the radiation admittance.

The radiated elastic energy Wel is different for impacts on thin plates and on thick blocks because the radi-
ation admittance Ỹel(f ) has a different expression. Developing equation (22), we obtain in Table 1 analytical
expressions for the elastic energy Wel radiated during an impact on thin plates and thick blocks, as a function
of the impact parameters (see Appendix A for details on the calculations). On thin plates,

Wel = a1Cplatem5∕3V11∕5
z (23)

and on thick blocks,
Wel = a2CblockmV13∕5

z , (24)

where coefficients a1 and a2 depend only on the elastic parameters (see Table 1). In these expressions,
Cplate = ∫ +∞

−∞ |g(t∗)|2dt∗ and Cblock = ∫ +∞
0 f ∗2|g̃(f ∗)|2df ∗, where |g(t∗)| = |Fz(t)|∕F0 with t∗ = Vzt∕𝛿z0 and

where g̃(f ∗) is the time Fourier transform of g(t∗). For an elastic impact, i.e., with Fz(t) given by equation (5),
we obtain Cplate ≃ 1.21 and Cblock ≃ 0.02. The function g(t∗) has a lower amplitude when the impact is
inelastic compared to the case of an elastic impact (Figures 1b and 1c). Therefore, both coefficients Cplate

and Cblock decrease when the viscoelastic parameter 𝛼 increases and when the stresses ratio PY∕P0 decreases
(Figures 2a and 2b). Moreover, on thin plates Cplate also decreases when the parameter𝜆Z increases (Figure 2a).
As a consequence, less energy is radiated in the form of elastic waves when the impact is inelastic with respect
to the case of an elastic impact.
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Table 1. Scaling Laws for the Radiated Elastic Energy and the Energy Dissipated in Viscoelasticitya

Plates Blocks

Wel a1Cplatem5∕3V11∕5
z a2CblockmV13∕5

z

a3CplateR5H11∕10 a4CblockR3H13∕10

Wvisc CviscmV2
z

a5CviscR3H

a1 ≈ 0.18 E∗2∕5

𝜌
1∕15
s

√
B𝜌ph

a2 ≈ 15.93 𝜉4𝛽E∗6∕5

𝜌p𝜌
1∕5
s c3

P

a3 = (2g)11∕10( 4
3
𝜋𝜌s)5∕3a1 a4 = (2g)13∕10 4

3
𝜋𝜌sa2

a5 = 2g 4
3
𝜋𝜌s

aRadiated elastic energy Wel and energy Wvisc dissipated in viscoelasticity for plates of thickness h and blocks as a
function of the impact parameters. The coefficients ai depend only on the elastic parameters of the impactor and of the
structure. The parameter 𝛽 is a function of the Poisson’s ratio 𝜈p only (see Figure A1 of Appendix A). The coefficients Cplate
and Cblock are represented on Figure 2.

On thick blocks, the radiated elastic energy Wel is proportional to the impactor’s mass m for a given impact
speed Vz (equation (24)). Moreover, the ratio of Wel over the impact energy Ec = 1

2
mV2

z varies as V3∕5
z and is

independent of the sphere mass m, which is in agreement with Hunter’s [1957] findings.

It is important to note that the analytical expressions for the radiated elastic energy Wel in Table 1 are only
controlled by the impact force Fz and by the rheological parameters of the impactor and the substrate in the
vicinity of the impact but do not depend on wave dispersion and viscous dissipation during wave propagation
within the substrate.
2.2.2. Characteristic Frequencies
The frequency content of the seismic signal emitted by an impact can give information on the impact dura-
tion. To describe the amplitude spectrum |Ãz(r, f )| of the acceleration vibration, we can measure either of the
following:

1. A mean frequency fmean that is less sensitive to the signal to noise ratio than the frequency for which the
amplitude spectrum is maximum [Vinningland et al., 2007a, 2007b]:

fmean =
∫ +∞

0 |Ãz(r, f )|f df

∫ +∞
0 |Ãz(r, f )|df

, (25)

2. The bandwidth Δf :

Δf = 2

√√√√∫ +∞
0 |Ãz(r, f )|f 2df

∫ +∞
0 |Ãz(r, f )|df

− fmean
2
. (26)

Regardless of the complexity (fracturation, layers, etc.) of the substrate where the waves emitted by the impact
propagate, it is important to notice that the mean frequency fmean and the bandwidth Δf are always inversely

Figure 2. Values of the constants (a) Cplate, (b) Cblock, and (c) Cvisc as a function of the inelastic parameters 𝛼 for a
viscoelastic impact (or 𝜆Z for Zener’s [1941] theory) (green) and PY∕P0 for an elastoplastic impact (red).
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Table 2. Characteristics Frequenciesa

fmean Δf

Plates 0.75∕Tc 0.72∕Tc

Blocks 1∕Tc 0.6∕Tc

aTheoretical mean frequency fmean and bandwidth Δf , as, respectively,
defined by equations (25) and (26), of the acoustic signal generated by an
elastic impact on a thin plate and on a thick block.

proportional to the duration of the impact, which is given by the force history at the position of the impact.
Here we normalize these frequencies by Hertz’s [1882] impact duration Tc. The coefficients of proportionality
between fmean, Δf , and 1∕Tc are estimated for elastic, viscoelastic, and elastoplastic impacts by computing a
synthetic spectrum |Ãz(r, f )| using equation (2) with the forces represented in Figures 1b and 1c for different
values of 𝛼 and PY∕P0. The frequencies for an elastic impact, i.e., for 𝛼 = 0 and PY∕P0 = 1, are given in Table 2.
Both frequencies fmean and Δf are smaller when the impact is inelastic compared to the case of an elastic
impact (Figure 3). They decrease by ∼5% when 𝛼 increases from 0 to 0.5 and by ∼25% when the stresses ratio
PY∕P0 decreases from 1 to 0.5.

When normalized by Tc, the characteristic frequencies are also affected by wave dispersion and viscous
attenuation of energy during propagation, i.e., by Green’s function of the structure. These propagation effects
are independent of the profile of the impact force, i.e., of the fact that the impact is elastic or inelastic. For
the computation of the characteristic frequencies on thick blocks, we used for simplicity the far field approx-
imation of Green’s function of Rayleigh waves (equation (4)). This approximation is correct for impacts on
homogeneous media such that investigated in the laboratory experiments of section 4. In the field, however,
the propagation medium is much more complex and other modes with a different dispersion could develop.
In this case, the frequencies normalized by Tc shown in Table 2 could change. Active or passive seismic surveys
can allow to evaluate locally Green’s function of a specific site. This Green’s function can then be used in
equations (25) and (26) to estimate how much the normalized frequencies differ from that computed using
Green’s function of Rayleigh waves. This is, however, beyond the scope of the paper. In addition to dispersion,

Figure 3. Theoretical values of the (a and c) mean frequency fmean and (b and d) bandwidth Δf for (Figures 3a and 3b)
thin plates and (Figures 3c and 3d) thick blocks, as a function of the inelastic parameters 𝛼 (green) and PY∕P0 (red). All
frequencies are multiplied by Hertz’s [1882] impact duration Tc to be dimensionless.
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viscous attenuation of energy during propagation can have a significant influence on the measured frequency
on the field, especially for high frequencies. Gimbert et al. [2014] investigated the amplitude spectrum gen-
erated by the turbulent flow in rivers and showed that its central frequency can decrease by a factor of 10
when the distance r from the source increases from 5 m to 600 m, for a quality factor Q = 20. To quantify the
effect of viscous attenuation on frequencies in our impact experiments, we multiply the synthetic spectrum
in equations (25) and (26) by the factor exp (−𝛾(𝜔)r), where 1∕𝛾(𝜔) represents the characteristic distance of
energy attenuation. In our experiments, the propagation media are homogeneous and we record the seis-
mic signals close to the impacts, from r = 2 cm to about r = 30 cm. In this range of distances r and for
the substrates investigated in section 4, we estimate that the characteristic frequencies fmean decreases and
Δf increases by less than 5% when r increases, which is negligible. However, for every practical applications,
it is crucial to evaluate wave dispersion and viscous attenuation during propagation and correct the mea-
sured seismic signal from these effects before computing its energy Wel and its frequencies fmean and Δf . This
correction is systematically performed in our experiments.
2.2.3. Inverse Scaling Laws
We can invert the scaling laws derived in this section for the radiated elastic energy Wel and for the frequencies
fmean and Δf (Tables 1 and 2) to express the mass m and the impact speed Vz as functions of the radiated
elastic energy Wel and a characteristic frequency fc of the seismic signal that is either fmean or Δf .

On thin plates, Wel = a1Cplatem5∕3V11∕5
z , fmean = 0.75∕Tc, and Δf = 0.72∕Tc, then developing the expression

of Tc (equation (9)), we obtain

m = c1

(
E∗2

(a1Cplate)3∕11𝜌
1∕3
s

)11∕16
W3∕16

el

f 33∕16
c

(27)

and

Vz = c2

(
𝜌

1∕3
s

a1CplateE∗2

)5∕16

W5∕16
el f 25∕16

c , (28)

where c1 ≈ 0.046 or 0.05 and c2 ≈ 10.8 or 10.1 if fc is fmean or Δf , respectively. The coefficient a1 is given in
Table 1.

On thick blocks, the inversion of the relations Wel = a2CblockmV13∕5
z , fmean = 1∕Tc, and Δf = 0.6∕Tc gives

m = c3

(
E∗6∕5

(a2Cblock)3∕13𝜌
1∕5
s

)13∕16
W3∕16

el

f 39∕16
c

(29)

and

Vz = c4

(
𝜌

1∕5
s

a2CblockE∗6∕5

)5∕16

W5∕16
el f 15∕16

c , (30)

where c3 ≈ 4.88 or 4.7 and c4 ≈ 0.018 or 0.02 if fc is fmean or Δf , respectively. The value of a2 is given in Table 1.

The physical characteristics of an impact can then be theoretically deduced from the generated seismic signal.
With a continuous recording the seismic signals emitted by rockfalls, such that performed in Dolomieu crater,
Réunion Island [e.g., Hibert et al., 2014a], the relations (27) to (30) could be very useful for risks assessment
related to these events. Note that the estimation of the impact parameters m and Vz requires a prior evalua-
tion of the elastic properties 𝜌i , Ei , and 𝜈i of the impactor and the ground. It should also be noticed that m and
Vz strongly depend on the frequency fc. For example, on blocks, if the characteristic frequency is underesti-
mated by a factor of 2, the mass m will be overestimated by a factor of 239∕16 ≃ 5.4. It is therefore necessary
to record the entire frequency spectrum to obtain a good estimation of the impact parameters. Because of
temporal aliasing during signal sampling, an ideal sampling frequency should be higher than 2 times the
highest frequency of the spectrum, which should be at least fmean +Δf∕2. According to Table 2, the sampling
frequency should then be at minimum 3∕Tc. For example, in our laboratory experiments in section 4.3, the
smallest impact duration Tc is estimated to be 3.10−6 s. Consequently, we record signals with a sampling

FARIN ET AL. CHARACTERIZATION OF ROCKFALLS FROM SEISMIC SIGNAL 10



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012331

frequency higher than 1 MHz. In contrast, the required sampling frequencies for natural rockfalls should be
from a few tens to a few hundreds of hertz, increasing with decreasing impactor’s mass. This is discussed in
section 5.3.

In section 4.3, the scaling laws presented in Tables 1 and 2 are tested with impacts experiments. Moreover,
the masses m and the speeds Vz of the impactors in the experiments are retrieved from the measured seismic
signals using equations (27) to (30), and they are compared with their real values.

2.3. Energy Budget and Coefficient of Restitution
Another objective of this paper is to establish an energy budget of the impacts. In that way, we compare the
radiated elastic energy Wel to the total energy lost during the impact ΔEc. From a practical point of view, the
total energy lost by a spherical bead rebounding normally and without rotation can be easily measured from
the difference of the bead kinetic energy before and after the impact:

ΔEc =
1
2

mV2
z (1 − e2), (31)

where e is the normal coefficient of restitution, which is the ratio of the bead vertical speeds after and before
the impact, respectively, V ′ and Vz [e.g., Tillett, 1954; Hunter, 1957; Reed, 1985; Falcon et al., 1998; McLaskey and
Glaser, 2010].

ΔEc is the sum of the energy radiated in elastic waves (Wel), lost in viscoelastic dissipation in the vicinity of
the contact (Wvisc) and dissipated by all other processes (Wother). These other losses can be due to plastic
deformation [Davies, 1949], surface forces between the sphere and the surface, as, e.g., electrostatic forces
[Israelachvili, 2002], or in general grain scale interactions [Duran, 2010; Andreotti et al., 2013]:

ΔEc = Wel + Wvisc + Wother. (32)

In our impacts experiments, the radiated elastic energy Wel is deduced from a measurement of the generated
seismic signal. Here we present an analytical expression for the energy Wvisc that will be used later to estimate
the losses related to viscoelastic dissipation.
2.3.1. Energy Lost by Viscoelastic Dissipation
The energy Wvisc lost by viscoelastic dissipation in the vicinity of the impact results from the work done by the
viscoelastic force Fdiss = − 3

2
DK d𝛿z(t)

dt
𝛿

1∕2
z (t) during the impact

Wvisc = ∫
+∞

0
Fdiss(t) ⋅

d𝛿z(t)
dt

dt. (33)

Using the dimensionless variables 𝛿∗ = 𝛿z∕𝛿z0 and t∗ = Vzt∕𝛿z0 and the viscoelastic parameter 𝛼 = 3
2

DVz∕𝛿z0,
we can show that

Wvisc = CviscmV2
z , (34)

where Cvisc = ∫ +∞
0

(
d𝛿∗

dt∗

)2
𝛿∗1∕2dt∗ is a function of 𝛼 only (Figure 2c). For an elastic impact, no work is done by

the viscoelastic force because Cvisc = 0. The expression of Wvisc is independent of the fact that the impact is
on a plate or on a block because it concerns the energy dissipated in the impact region.

The proportion of total energy Ec dissipated by viscoelasticity can be developed in powers of the mass m and
the impact speed Vz using the third order Taylor series Cvisc ≈ 1.24𝛼 − 1.51𝛼2 + 0.86𝛼3 and the expression of
𝛼 in equation (19):

Wvisc

Ec
= 2Cvisc ≈ 3.47x − 5.92x2 + 4.72x3 + O(x3), (35)

where x = DE∗2∕5𝜌
−1∕15
s m−1∕3V1∕5

z , which is in agreement with the viscoelastic impact models of Kuwabara
and Kono [1987] and Ramírez et al. [1999].
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2.3.2. Total Energy Lost
Finally, if we assume that the sole energy dissipation processes are elastic waves radiation and viscoelastic dis-
sipation and that other energy dissipation processes (e.g., plastic deformation) are negligible, the proportion
of the lost energy ΔEc radiated in elastic waves is, on plates,

Wel

ΔEc
=

a1Cplatem2∕3V1∕5
z

a1Cplatem2∕3V1∕5
z + Cvisc

, (36)

and the proportion of the lost energy ΔEc dissipated in viscoelasticity is

Wvisc

ΔEc
=

Cvisc

a1Cplatem2∕3V1∕5
z + Cvisc

. (37)

In these expressions, at first-order Cvisc ∝ m−1∕3 (equation (35)). Therefore, when the mass m of the impactor
increases, the proportion of the lost energy ΔEc radiated in elastic waves should tend toward 100% and that
loss by viscoelastic dissipation should tend toward 0%. The transition from a viscoelastic impact (for small
masses) toward an elastic impact (for large masses) occurs when a1Cplatem2∕3V1∕5

z = Cvisc, i.e., for a critical mass

mc ≈ 8D
√

B𝜌ph.

On blocks, we get

Wel

ΔEc
=

a2CblockV3∕5
z

a2CblockV3∕5
z + Cvisc

, (38)

and

Wvisc

ΔEc
=

Cvisc

a2CblockV3∕5
z + Cvisc

. (39)

For large masses m, the ratio Wel∕ΔEc becomes independent of m and tends toward 100% because Cvisc is
negligible. When m decreases, the ratio Wel∕ΔEc decreases and the ratio Wvisc∕ΔEc increases.

This model is somewhat ideal because the energy dissipated by other processes such as plastic deformation
is not negligible when the impactor’s mass m is large, in particular when the contact surface is rough. As a
consequence, the ratio Wel∕ΔEc practically never reaches 100% when m increases (see section 4.4.2).

The validity of theoretical scaling laws established in this section for the radiated elastic energy, the frequen-
cies, and the lost energy is tested in section 4 with simple impact experiments. Prior to this, the experimental
setup is presented in the next section.

3. Experimental Setup

We conduct laboratory experiments of beads and gravels impacts on horizontal hard substrates. The gener-
ated seismic vibration is recorded on the surface by monocomponent piezoelectric charge shock accelerom-
eters (type 8309, Brüel and Kjaer). The response of the sensors is flat between 1 Hz and 54 kHz. The impactor is
initially held by a screw and dropped without initial velocity and rotation to ensure reproducibility (Figure 4a).
The height of fall H varies between 2 cm and 40 cm. The impact speed Vz is calculated assuming a fall without
air friction: Vz =

√
2gH, with g the gravitational acceleration.

We drop spherical beads of steel, glass, and polyamide (Figure 4b) of diameter d ranging from 1 mm to 20 mm
to observe the influence of the mass and of the elastic parameters on the results. We conduct the same
experiments with granite gravels of irregular shapes and of similar size and mass than the beads to test if
the analytical scaling laws established for spheres impacts are still valid if the impactor is not spherical. The
properties of the impactors used in the experiments are shown in Table 3.

Four target substrates are used: (i) a smooth PMMA (i.e. polymethyl methacrylate) plate of dimensions
120×100 × 1 cm3, (ii) a circular 1 cm thick smooth glass plate of radius 40 cm, (iii) a rough marble block of
dimensions 20 × 20 × 15 cm3, and (iv) a rough concrete pillar of dimensions 3 × 1.5 × 0.6 m3. The seismic
vibration is recorded at different distances from the impacts to measure waves group speed vg = 𝜕𝜔∕𝜕k and
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Figure 4. (a) Scheme of the experimental setup. An impactor of diameter d is initially held by a screw and dropped
without initial speed or rotation on a hard structure of thickness h. The height of fall H varies from 2 cm to 30 cm.
The impact generates elastic waves, recorded by an array of accelerometers. (b) Spherical beads of glass, polyamide,
and steel and granite gravels used as impactors in the experiments.

phase speed v𝜙 = 𝜔∕k of the direct wave front in these substrates. These characteristics and the elastic param-
eters of the investigated structures are summarized in Table 4. We assume that the rheological properties
Ep, 𝜈p, and 𝜌p of the substrates in the vicinity of the impact are the same than that within the substrates, where
the waves propagate. This hypothesis is valid for the homogeneous solids investigated here, but it may not be
correct in the fractured and layered media encountered in the field, whose elastic properties vary with depth.
In any cases, it is necessary to determine these properties in order to quantify the radiated elastic energy Wel

and to deduce thereafter the impact parameters m and Vz from the seismic signal.

4. Experimental Results

4.1. Methods to Estimate the Radiated Elastic Energy
Let us first describe the signals recorded in our experiments of bead impacts on the different substrates and
how we compute the radiated elastic energy Wel in each case. A bouncing bead generates a series of short
and impulsive acoustic signals (Figures 5a, 5b, 6a, and 6b). The bead can rebound more than 50 times on the
smooth glass plate, while it rebounds only 2 or 3 times on the concrete block owing to surface roughness
(Figures 5b and 6a). We estimate the coefficient of normal restitution e =

√
H′∕H from the time of flight Δt

between the successive rebounds because the rebound height is given by H′ = gΔt2∕8 [Falcon et al., 1998;
Farin, 2015]. The total energy lost during an impact is then given by 1 − e2 (see equation (31)).

The PMMA and glass plates and the concrete block are sufficiently large to measure most of the first wave
arrival before the return of the first reflections off the lateral sides (Figures 5c, 5f, and 6e). In these cases, we
estimate the radiated elastic energy Wel from the energy flux crossing a surface surrounding the impact, as
detailed in Farin et al. [2015], i.e., for plates,

Wel = 2rh𝜌p ∫
+∞

0
vg(𝜔)|Ṽz(r, 𝜔)|2 exp (𝛾(𝜔)r)d𝜔 (40)

and for blocks

Wel = 2𝜌prvgcP𝜋
surf
R (r)

𝛽(f ′0(x0))2

2𝜋𝜉4(x2
0 − 1) ∫

+∞

0
|Ṽz(r, 𝜔)|2𝜔−1 exp (𝛾(𝜔)r)d𝜔. (41)

Table 3. Characteristics of the Impactors Used in Experiments: Density 𝜌s, Young’s Modulus
Es , Poisson’S Ratio 𝜈s, Diameter d, and Mass m

𝜌s Es 𝜈s d m

Material (kg m−3) (GPa) - (mm) (g)

Spherical beads Glass 2500 74 0.2 1–20 1.3 ⋅ 10−3 to 10

Polyamide 1140 4 0.4 2–20 6 ⋅ 10−4 to 4.8

Steel 7800 203 0.3 1–20 4.1 ⋅ 10−3 to 33

Gravels Granite 3600 60 0.27 ≈ 4–28 0.08 to 18
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Table 4. Characteristics of the Materials Used in Experimentsa

𝜌p Ep 𝜈p 𝛾 𝜏 vg v𝜙

Material (kg m−3) (GPa) - (1/m) (s) (m s−1) (m s−1)

Glass kh < 1 2500 74 0.2 0.014f 1∕6 3.8f−2∕3 18.6f 1∕2 9.3f 1∕2

kh> 1 8.5 × 10−5f 2∕3 3100 3100

PMMA kh < 1 1180 2.4 0.37 1 0.09f−1∕2 11.7f 1∕2 5.8f 1∕2

kh> 1 4.8 × 10−3f 2∕3 0.15f−2∕3 1400 1400

Concrete - 2300 16.3 0.4 2.3.10−5f 28f−1 1530 1530

Marble - 2800 26 0.3 2.5.10−5f 23.1f−1 1750 1750
aDensity 𝜌p , Young’s modulus Ep , Poisson’s ratio 𝜈p , characteristic distance 1∕𝛾 and time 𝜏 of energy attenuation, group

velocity vg , and phase velocity v𝜙 (that depend on the frequency f (in Hz)) (see the supplementary materials of Farin
et al. [2015], for details on the measurement of 𝛾 and 𝜏).

In these expressions, vg is the group speed, |Ṽz(r, 𝜔)| is the time Fourier transform of the vertical vibration
speed at the surface, and 𝜋surf

R (r) is the percentage of Rayleigh waves in the signal at the surface at distance
r from the impact [Farin et al., 2015]. The factor exp (𝛾(𝜔)r) compensates the viscous dissipation of energy
with distance. The characteristic distance of energy attenuation 1∕𝛾(𝜔) is estimated experimentally for every

Figure 5. Acceleration signal az(r, t) generated by the successive impacts of a steel bead of diameter d = 5 mm, dropped
from height H = 10 cm on (a) the PMMA plate and (b) the glass plate. The time of flight Δt between two impacts is equal
to the duration between two peaks. (c and d) Zoom on the signal of the first rebound, filtered below 100 kHz. The coda
envelope decreases exponentially with time in the glass plate (red line). (c, e, and f ) The first arrival is delimited by a red
frame, and the first reflections off the plate lateral sides arrive at the right of the blue dashed line. The arrival time of the
reflections is computed knowing the wave speed and the distance between the sensor and the substrate sides. (g and h)
The time Fourier transform of the first arrival gives the amplitude spectrum |Ãz(r, f )| as a function of the frequency f . The
thick blue line in Figures 5e–5h represents the synthetic signal and amplitude spectrum obtained by convolution of
Hertz’s [1882] force of impact with Green’s function.
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Figure 6. Acceleration signal az(r, t) generated by the successive impacts of a steel bead of diameter d = 5 mm, dropped
from height H = 10 cm on (a) the concrete block and (b) the marble block. (c and d) Zoom on the signal of the first
rebound, filtered below 100 kHz. The coda envelope decreases exponentially with time (red line). (e and f) The first
arrival is delimited by a red frame, and the first reflections off the plate lateral sides arrive at the right of the blue dashed
line. The arrival time of the reflections is computed knowing the wave speed and the distance between the sensor and
the substrate sides. (g and h) The time Fourier transform of the first arrival gives the amplitude spectrum |Ãz(r, f )| as a
function of the frequency f . The thick blue line in Figures 5e–5h represents the synthetic signal and amplitude spectrum
obtained by convolution of Hertz’s [1882] force of impact with Green’s function.

substrates (Table 4) [see Farin et al., 2015, for details]. The coefficient 𝛽 depends only on the Poisson’s ratio 𝜈p

(see Figure A1 in Appendix A).

Because the substrates size is limited, wave reflections off the boundaries are recorded by the sensors. Side
reflections are strongly attenuated in PMMA which is a more damping material than glass, concrete, and mar-
ble (Figure 5c). On the contrary, the wave is reflected many times in the glass plate and in the two blocks and its
averaged amplitude decreases exponentially with time owing to viscous dissipation during wave propagation
(Figures 5d, 6c, and 6d). An adjustment of an exponential curve on the squared signal, filtered below 2000 Hz,
allows us to quantify the characteristic decay time of energy 𝜏 in the substrate (Table 4) [see Appendix B of
Farin et al., 2015, for details on the experimental procedure]. This situation is referred to as a diffuse field in
the literature [e.g., Weaver, 1985; Mayeda and Malagnini, 2010; Sánchez-Sesma et al., 2011]. In this case, we can
estimate the radiated elastic energy Wel from the reflected coda. Indeed, in diffuse field approximation, the
squared normal vibration speed averaged over several periods decreases exponentially:

vz(t)2 = vz(t = 0)2 exp
(
− t
𝜏

)
, (42)

where t=0 is the instant of the impact. Knowing the characteristic time 𝜏 , we extrapolate the vibration speed
at the instant t=0 and deduce the radiated elastic energy Wel from [Farin et al., 2015]:

Wel ≈
(

1 +
(

)2

diffuse

)
𝜌pVvz(t = 0)2, (43)
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where V is the block volume and
(


)

diffuse
is the ratio of horizontal to vertical amplitude at the surface of

the structure in diffuse field approximation. On thin plates,
(


)

diffuse
≃ 0. On a thick block of Poisson’s ratio

𝜈p, Sánchez-Sesma et al. [2011] give
(


)

diffuse
≈ 1.245 + 0.348𝜈p. Due to statistical assumptions, the diffuse

method leads to larger uncertainties on the results compared to that based on the energy flux [Farin et al.,
2015]. However, it is the only method that can be applied when the first arrival cannot be distinguished from
its side reflections, as, for example, in the marble block (Figure 6f ).

4.2. Comparison With Synthetic Signals
We compare the measured vibration acceleration az(r, t) with a synthetic signal which is the time convolution
of Hertz’s [1882] force of elastic impact (Figure 1b with 𝛼 = 0) with Green’s function (equations (3) and (4))
(Figures 5e–5h and 6h).

A good agreement is observed in terms of amplitude and frequencies on the PMMA plate, but the agreement
is less satisfactory on the other substrates. On glass, only the beginning of the signal is well reproduced by the
theory (Figure 5f ). A resonance of the accelerometer coupled to the glass plate for 38 kHz could explain why
the recorded vibration lasts longer than the synthetic one (Figure 5f ). This effect clearly appears on the Fourier
transform of the signal with a peak of energy around 38 kHz (Figure 5h). Using a laser Doppler vibrometer
that measures the exact surface vibration speed but with a much lower sensitivity than the accelerometers,
we determined that the resonance overestimates the vibration energy by a factor of 4. To compensate this
effect, we divide the measured radiated elastic energy Wel by this factor. On concrete, the synthetic is signifi-
cantly different than the recorded signal in terms of higher amplitude and frequencies (Figures 6f and 6h). The
impact may be not completely normal to the surface owing to the surface roughness, and this could reduce
the energy on the normal component, as discussed later in section 5. On marble, the frequencies of the mea-
sured signal are close to that of the synthetic one but the amplitude is higher than in theory, probably because
side reflections arrive before the end of the first arrival (Figures 6e and 6g). This has no consequence on the
estimation of the radiated elastic energy Wel for this block because we use the diffuse method (equation (43)).
Note that the peaks of energy for f > 50 kHz in the synthetic spectrum on the concrete and marble block
are not visible in the recordings, because the accelerometers are not sensitive in this frequency range
(see Appendix B).

4.3. Experimental Test of the Analytical Scaling Laws
4.3.1. Radiated Elastic Energy
Regardless of the bead material, the measured radiated elastic energy Wel on the PMMA and glass plates
matches well with the theoretical energy Wth

el predicted in equation (23) for an elastic impact, with Cplate = 1.21
(Figure 7). For the smallest and the largest beads investigated, however, the data points separate from the
theoretical line and the discrepancy can reach a factor of 5. This is clearer for steel beads (Figures 7c and 7g)
and for glass beads on the glass plate (Figure 7e).

On blocks, the theory predicts that Wth
el ∝ mV13∕5

z (equation (24) and Table 1). The experimental data of beads
impacts on the concrete and marble blocks follow qualitatively this law (Figure 8). In most of the experiments,
however, the measured energy Wel is lower than in theory. Moreover, on concrete, the measured radiated
elastic energy Wel separates from the theoretical trend for the smallest and the largest beads investigated
(Figures 8a–8c). The discrepancy with the theory on Figures 7 and 8 is interpreted in the discussion.

Surprisingly, the elastic energy Wel radiated by the impacts of granite gravels follows well the scaling law in
m5∕3V11∕5

z on plates (Figures 7d and 7h) and in mV13∕5
z on blocks (Figures 8d and 8h). The measured energy

Wel is, however, smaller than in theory, by a factor of 2 on plates and up to 10 times smaller on blocks.
The experiments with gravels show that Hertz’s analytical model of elastic impact, established for spheres,
can also describe at first order the impact dynamics of impactors with a complex shape. As a consequence,
we expect that it may also be applied for natural rockfalls.
4.3.2. Characteristics Frequencies
We compute the mean frequency fmean and the bandwidth Δf using equations (25) and (26), respectively
(Figure 9). Note that the seismic signals generated by bead impacts in our experiments contain much higher
frequencies (1 Hz–100 kHz) than those recorded for natural rockfalls (1 Hz–50 Hz) [e.g., Deparis et al., 2008;
Hibert et al., 2011]. This is because the beads diameters are in average smaller than the diameter of natural
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Figure 7. Radiated elastic energy Wel as a function of m5∕3V11∕5
z for impacts of (a and e) glass, (b and f) polyamide, and

(c and g) steel beads and (d and h) gravels on (Figures 5a–5d) the PMMA plate and on (Figures 5e–5h) the glass plate.
The red line corresponds to the theoretical energy Wth

el
given in Table 1 for an elastic impact, i.e., with Cplate = 1.21. The

black dashed line is a fit to the data of the law Wel = cm5∕3V11∕5
z , with coefficient c indicated in International System

Units (SI). In most cases, this line collapses with the theoretical line in red. Error bars on Wel (±35%) are computed from
±1 standard deviation on a series of 20 experiments and are symbols sized.

boulders, which could be from a few millimeters to a few meters large. In addition, the sampling frequency is
much higher and high frequencies are much less attenuated in our experiments than on the field.

On the glass plate, as the accelerometers are not sensitive to frequencies larger than 50 kHz, the frequencies
computed with these sensors saturate to about 40 kHz for the smallest beads, i.e., the smallest impact dura-
tions Tc (black crosses on Figures 9c and 9d). Therefore, the accelerometers type 8309 are used only for the
impacts that generate energy below 50 kHz. For the signals of higher frequencies, we use in parallel piezo-
electric ceramics (MICRO-80, Physical Acoustics Corporation) sensitive between 100 kHz to 1 MHz. These last
sensors can, however, not be used to quantify the radiated elastic energy Wel since they are not very sensitive
to frequencies lower than 100 kHz.
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Figure 8. Radiated elastic energy Wel as a function of mV13∕5
z for impacts of (a and e) glass, (b and f) polyamide,

and (c and g) steel beads and (d and h) gravels on (Figures 8a–8d) the concrete block and on (Figures 8e–8h) the
marble block. The red line corresponds to the theoretical energy Wth

el
given in Table 1 for an elastic impact, i.e., with

Cblock = 0.02. The black dashed line is a fit to the data of the law Wel = cmV13∕5
z , with coefficient c indicated in

International System Units (SI).

Regardless of the bead material, the frequencies of the signals generated by impacts on PMMA, glass, and
marble collapse well within ±20% with the theoretical scaling laws of Table 2 as a function of the duration
of impact Tc (Figures 9a to 9d, 9g, and 9h). The agreement is better for the frequency bandwidth Δf than for
the mean frequency fmean. The agreement is also very satisfactory for the granite gravels of complex shape,
even though the theoretical values of the frequencies were computed using Hertz’s impact model for a sphere
(see section 2.2.2).

In concrete, the wavelength cR∕f ≈ 1 cm for frequencies around 40 kHz, which is of the order of the size of
the heterogeneities. High frequencies f > 40 kHz are therefore strongly attenuated during wave propagation
in this block. This could explain the discrepancy with the theory for these frequencies on Figure 9e.
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Figure 9. (a), (c), (e), and (g) Mean frequency fmean and (b), (d), (f ), and (h) bandwidth Δf as a function of Hertz’s [1882]
impact duration Tc (equation (9)) for impacts of glass, polyamide, and steel beads and granite gravels on (Figures 9a and 9b)
the PMMA plate, (Figures 9c and 9d) the glass plate, (Figures 9e and 9f) the concrete block, and (Figures 9g and 9h) the
marble block. The red line corresponds to the theoretical prediction (Table 2), and the red dashed line in Figure 9e is a fit
to the data. The black crosses in Figures 9c and 9d correspond to the frequencies of the signals generated by steel beads
measured with the accelerometers type 8309, which resonate around 38 kHz on the glass plate (see text). Error bars are
of the size of the symbols and are ±20%.

4.3.3. Estimating Impact Properties From the Seismic Signal
We use equations (27) to (30) with the coefficients for an elastic impact Cplate = 1.21 and Cblock = 0.02 to
retrieve the mass m and the impact speed Vz of the impactors in our experiments. The agreement with the real
values is correct, within a factor of 2 for the mass m (Figure 10a) and within a factor of 3 for the impact speed
Vz (Figure 10b), both on smooth thin plates and rough thick blocks. For impacts of rough gravels on the two
plates, the predicted values are still close to the real ones, with a factor of 1.5, even when inelastic dissipation
occurs. The underestimation of m and Vz in certain cases is consistent with the aforementioned discrepancy
of the radiated energy Wel with theory (Figures 7 and 8).

It is therefore possible to have an estimation of the mass m and the impact speed Vz of an impactor on a plate
and on a block from the characteristics of the generated seismic signal, with less than an order of magnitude
from the real values, using only Hertz’s [1882] analytical model of elastic impact. This method only requires to
know the elastic parameters of the involved materials.
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Figure 10. (a) Mass minv inverted from signal bandwidth Δf and radiated elastic energy Wel using equation (27) for
plates and equation (29) for blocks as a function of the real mass m. (b) Impact speed Vzinv inverted using equation (28)
for plates and equation (30) for blocks as a function of the real impact speed Vz . The black full line is a perfect fit.

4.4. Energy Budget of the Impacts
Inelastic losses during an impact can reduce the energy radiated in the form of elastic waves Wel compared to
that predicted by Hertz’s [1882] model (see section 2.2.1). This may explain part of the discrepancy observed
between the measured radiated elastic energy Wel and its theoretical value Wth

el on Figures 7 and 8 and
consequently between the values of the masses m and speeds Vz inverted from seismic signals and their real
values on Figure 10. In order to interpret these discrepancies, we establish in this section an energy budget
of the impacts.

For that purpose, we compare on Figures 11 and 13 the measured radiated elastic energy Wel (empty symbols)
with the total energy lost during the impact ΔEc, estimated with the coefficient of restitution e (full symbols).
The difference ΔEc − Wel is likely lost in inelastic processes, such as viscoelastic dissipation or plastic
deformation. This allows us to establish an energy budget of the impacts (Figures 12 and 14).

Furthermore, we also compare the measured radiated energy Wel with the theoretical one—noted Wth
el , red

line on Figures 11 and 13—predicted by the scaling law in Table 1 for an elastic impact, with Cplate = 1.21 and
Cblock = 0.02, respectively. Note that on plates, we take into account the dependence of Cplate coefficient to
𝜆Z parameter for large beads (see section 2.1.1.2 and Figure 2a). The corrected theoretical elastic energy on
plates is noted Wth′

el on Figure 11. The discrepancy with theory is discussed in section 5.1.

4.4.1. Energy Budget on Smooth Thin Plates
On smooth thin plates, the energy ΔEc lost by the bead during an impact is mostly radiated in elastic waves
(Wel) or dissipated by viscoelasticity during the impact (Wvisc) (Figures 11 and 12).

More energy is radiated in elastic waves as the bead mass m and the ratio of the bead diameter d on the
plate thickness h increase, regardless of the elastic parameters (empty symbols on Figures 11 and 12). For the
smallest beads investigated, only 0.1% to 0.3% of the impact energy Ec is radiated in elastic waves. In contrast,
the impact energy Ec can be almost entirely converted into elastic waves when the bead diameter d is greater
than the plate thickness h (Figure 11c). For large beads, the measured ratio of Wel∕Ec is close to the theoretical
ratio Wth′

el ∕Ec (full red line on Figure 11) but diverges as the bead diameter d decreases.

We adjust the viscoelastic parameter D in equation (35) to match the theoretical expression of the lost energy
ratio ΔEc∕Ec = Wth′

el ∕Ec +Wvisc∕Ec (thick green line on Figure 11) with the variation of 1− e2 (full symbols). The
agreement is found to be the best for values of D ranging from 35 ns to 580 ns (Table 5).

The adjustment of D with experimental data allows us to quantify the viscoelastic energy Wvisc (blue line on
Figure 11). More energy is lost by viscoelastic dissipation as the bead mass m and the ratio d∕h decrease, and
this is almost the sole process of energy loss when the bead diameter d is smaller than 0.2h (Figure 12). The

transition from a viscoelastic impact toward an elastic impact is observed for the critical mass mc ≈ 8D
√

B𝜌ph,
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Figure 11. Ratio of the measured radiated elastic energy Wel over the impact energy Ec = 1
2

mV2
z (empty symbols) and

measured lost energy ratio ΔEc∕Ec = 1 − e2 (full symbols) as a function of bead mass m and of the ratio of the bead
diameter d on the plate thickness h for impacts of (a and d) glass, (b and e) polyamide, and (c and f) steel beads on
(Figures 11a–11c) the PMMA plate and on (Figures 11d–11f ) the glass plate. The red dashed line corresponds to the
theoretical ratio Wth

el
∕Ec with Wth

el
in equation (23) for an elastic impact, i.e., with Cplate = 1.21. The red full line is the

energy ratio Wth′

el
∕Ec corrected with Cplate dependence on parameter 𝜆Z , the blue line is the viscoelastic energy ratio

Wvisc∕Ec (equation (35)), and the thick green line is the theoretical lost energy ratio, which is the sum of Wth′

el
∕Ec and

Wvisc∕Ec .

as predicted in section 2.3.2 (at the crossing between the red and blue lines on Figure 11). Interestingly, a
bouncing bead loses less of its initial energy Ec for masses m close to the critical mass mc.

For the largest beads of glass and steel, some energy is likely lost in plastic deformation of the softer material
involved (Figure 12). As a matter of fact, we observed small indentations on the surface of the plates after the
impacts of these beads but not for polyamide beads.

Note that the energy budget is very different for impacts of rough gravels on the same plates. Indeed, the
ratio Wel∕Ec is 3.3% ± 1.8% regardless of the gravel mass m. Moreover, about 33% ± 17% of the initial energy
is lost in translational energy of rebound and 13% ± 11% is converted into rotational energy of the gravel. As
a matter of fact, half of the gravel’s initial energy is in average lost in plastic deformation. (see Appendix C for
more details).
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Figure 12. Percentage of the total energy lost in elastic waves Wel∕ΔEc (red full line), by viscoelastic dissipation
Wvisc∕ΔEc (blue dashed line) and by other processes Wother∕ΔEc (orange dotted line) as a function of (a and c) the bead
mass m and (b and d) the ratio of the bead diameter d over the plate thickness h for impacts of glass (circles), polyamide
(triangles), and steel (diamonds) beads dropped from height H = 10 cm on (Figures 12a and 12b) the PMMA plate and
on (Figures 12c and 12d) the glass plate.

4.4.2. Energy Budget on Rough Thick Blocks
On the rough thick blocks, the energy budget is very different than on the smooth plates (Figures 13 and 14).
Indeed, a much smaller proportion of energy seems to be lost in elastic waves and in viscoelastic dissipation.
The rest is likely dissipated by other processes such as plastic deformation, adhesion, or rotational modes of
the bead owing to surface roughness.

The measured radiated elastic energy Wel represents only from 0.01% to 2% of the impact energy Ec, regardless
of the bead mass m (empty symbols on Figure 13). Theory predicts that the ratio Wth

el ∕Ec is independent of the
mass m (red line). However, the measured ratio Wel∕Ec slightly increases with bead mass m on concrete and
decreases on marble for different reasons explained in the discussion.

Contrary to plates, it is difficult here to determine what proportion of the lost energy ΔEc is dissipated by
viscoelasticity and what proportion is lost in other processes. However, one remarks that 1 − e2 increases
when the mass m decreases (full symbols on Figure 13). This variation may be due to viscoelastic dissipation
which is stronger when the bead mass m decreases (equation (35)). We make the strong assumption that
the percentage of energy lost in other processes Wother∕Ec is constant and independent of the bead mass m.

Table 5. Viscoelastic Constant D (in ns)a

substrate PMMA glass concrete marble

bead glass 230 80 100 180

polyamide 580 550 300 300

steel 190 35 200 200
aValue of the viscoelastic constant D appearing in equation (19) and adjusted on experimental data for impacts of

spherical beads of different material (rows) on the different substrates (columns).
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Figure 13. Ratio of the measured radiated elastic energy Wel over the impact energy Ec = 1
2

mV2
z (empty symbols) and

measured lost energy ratio ΔEc∕Ec = 1 − e2 (full symbols) as a function of bead mass m for impacts of (a and d) glass,
(b and e) polyamide, and (c and f) steel beads on (Figures 13a–13c) the concrete block and on (Figures 13d–13f ) the
marble block. The red line represents the theoretical ratio Wth

el
∕Ec with Wth

el
in equation (24) with Cblock = 0.02. The blue

line is the viscoelastic energy ratio Wvisc∕Ec (equation (35)). The dashed green line is the theoretical lost energy ratio
Wth

el
∕Ec + Wvisc∕Ec . The thick green line is the same ratio plus the percentage Wother∕Ec of energy lost in other processes,

which is assumed independent of the bead mass m (see text).

We then adjust the viscoelastic coefficient D (Table 5) to fit ΔEc∕Ec = Wth
el ∕Ec + Wvisc∕Ec + Wother∕Ec (thick

green line on Figure 13) with the variation of 1− e2 (full symbols). This allows to quantify the energy Wvisc lost

in viscoelastic dissipation (blue line).

In the case where no other energy losses than elastic waves radiation or viscoelastic dissipation occur, we

predicted that the ratios Wel∕ΔEc and Wvisc∕ΔEc should increase and tend toward 100% when the mass m

increases and decreases, respectively (equations (38) and (39)). Here elastic waves radiation and viscoelastic

dissipation follow the same dependence on the mass than that predicted but represent, respectively, from

0.03% to 5% and from 2% to 40 % of the lost energy ΔEc only (Figure 14). For impacts on rough substrates

as the two blocks investigated here, but also on the field, it is therefore important to take into account the

energy Wother lost in other processes. In our experiments, this energy seems to be an increasing percentage

of the lost energy ΔEc, from 50% to more than 99%, as the bead mass m increases (Figure 14).
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Figure 14. Percentage of the total energy lost in elastic waves Wel∕ΔEc (red full line), by viscoelastic dissipation
Wvisc∕ΔEc (blue dashed line) and by other processes Wother∕ΔEc (orange dotted line) as a function of the bead mass m
for impacts of glass (circles), polyamide (triangles), and steel (diamonds) beads dropped from height H = 10 cm on
(a) the concrete block and on (b) the marble block.

4.4.3. Evaluation of the Energy Budget for Natural Rockfalls
The energy budget of impacts on rough blocks in our laboratory experiments can be used to extrapolate that
of natural rockfalls. On the field, the impactor masses vary from a few grams to a few tons and drop heights
vary from a few centimeters to several tens of meters. Owing to strong energy dissipation in such complex
media, only impacts of large masses can be detected by seismic methods. Viscoelastic dissipation should
therefore be negligible in most situations encountered on the field. For example, we can estimate the energy
lost in viscoelastic dissipation for a granite gravel of m = 100 g impacting the ground with impact speed
Vz = 10 m s−1 using equation (35) with the coefficient D = 80 ns of glass, which has similar properties than
granite, and a typical Young’s modulus Ep = 10 MPa for the ground [Geotechdata.info, 2013]. It results that
the viscoelastic energy Wvisc lost during the impact represents only 0.04% of the impact energy Ec, which is
negligible. Moreover, it should be even smaller for larger masses m. The energy Wplast dissipated in plastic
deformation of the ground or of the impactor is expected to be much more significant on the field than in our
laboratory experiments and even more so when the mass m increases because large stresses are applied on
damaged materials with a low yield stress. For such impacts with a rough contact, the energy Wplast, in addition
to other energy lost in rotation and translational modes of the impactor, should then represent almost all
of the lost energy ΔEc (see Appendix C). Consequently, the ratio of the radiated elastic energy over the lost
energy Wel∕ΔEc may not exceed a few percents. For example, for impacts of beads on the rough concrete
block, for which plastic deformation is significant, the ratio Wel∕ΔEc seems to saturate to 2% ± 1% for m ≃ 1 g
and then decreases (Figure 14a).

5. Discussion

5.1. Discrepancy From Hertz’s Model
The characteristic frequencies of the signal generated by an impact do not significantly deviate from Hertz’s
[1882] prediction when the impact is inelastic (Figure 9). On the contrary, in some experiments, the measured
radiated elastic energy Wel diverges from that (noted Wth

el ) given by the scaling laws in Table 1 (Figures 7 and 8).
As a consequence, the masses m and speeds Vz retrieved from the measured signal in our experiments using
the elastic model deviate from their real values (Figure 10). Let us discuss here the observed discrepancy.
5.1.1. Small Bead Diameters
On smooth thin plates, for small bead diameters, viscoelastic dissipation is the major energy loss process
(Figure 12). For a steel bead of diameter 1 mm impacting the glass plate, using equation (19) with D = 35 ns
(see Table 5), the coefficient Cplate is found to be equal to 1.15 instead of 1.21 for an elastic impact
(see Figure 2a). Thus, the viscoelastic impact theory predicts that the radiated elastic energy Wth

el should be
only of 5% smaller than for an elastic impact, which is negligible compared with the observed difference of
73% (Figure 7g).

The major source of discrepancy is probably due to the fact that our sensors are band limited up to 50 kHz.
Indeed, for the 1 mm bead, 50% of the radiated energy is in theory higher than 50 kHz (see Appendix B). The
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remaining 23% may be lost in adhesion of the bead on the plate during the impact. In addition, some energy
may be lost in electrostaticity or capillarity, which are greater for the smallest beads [Andreotti et al., 2013]. The
discrepancy is totally explained by the limited bandwidth of the accelerometers for a steel bead of diameter
d = 2 mm on the glass plate: about 30% of the energy is over 50 kHz and the measured energy Wel is 35%
smaller than Wth

el (Figure 7g). Similarly, on concrete, for a steel bead of diameter d = 2 mm, the theory predicts
that only 17% of the radiated elastic energy is below 50 kHz. As a consequence, the measured energy Wel

represents only 17% of the theoretical energy Wth
el (Figure 8c). For greater bead diameters, both measured and

theoretical energies are contained below 50 kHz and the agreement with elastic theory is better (Figures 7
and 8). In contrast, on marble the radiated elastic energy is closer to the theory for the smallest beads
(Figures 13d to 13f ). For small bead diameters, less wave reflections occur within the block and the measured
energy may therefore be overestimated because the diffuse field is not completely set [Farin et al., 2015].

This emphasize the importance for future applications to use seismic sensors sensitive in the widest fre-
quency range as possible. In cases where we cannot measure the highest frequencies of the seismic vibration
generated by an impact, note that it is possible to retrieve the momentum mVz of the impactor from the
low-frequency content of measured amplitude spectrum (see Appendix D).
5.1.2. Large Bead Diameters
On smooth thin plates, the divergence of the measured radiated elastic energy Wel from the theoretical one
Wth

el for large bead diameters is partly compensated when we take into account the decrease of the coeffi-
cient Cplate when the parameter 𝜆Z increases (Figures 2a and 11). However, in some experiments, Wel is still
smaller than the theory when the bead diameter d is larger than the plate thickness h (Figures 11c, 11d,
and 11f). This difference may be due to plastic deformation which is more likely to occur for the largest
beads investigated.
5.1.3. Impacts With a Rough Contact
Two complementary effects can explain the discrepancy of the measured radiated elastic energy with theory
for impacts of spherical beads on the two rough blocks and for impacts of gravels (Figures 7d, 7h, and 8).

First, plastic deformation is a likely cause for measuring a smaller radiated elastic energy than in theory on
the blocks. If PY∕P0 = 0.6 in the elastoplastic model, the radiated elastic energy predicted in Table 1 is 2
times smaller than for an elastic impact because the coefficient Cblock ≈ 0.01 instead of 0.02 (Figure 2b). This
factor of 2 corresponds to that observed between the measured energy Wel and the theoretical one Wth

el for
impacts of glass and steel beads on the concrete block (Figures 8a and 8c). Measuring the discrepancy of the
radiated elastic energy from elastic theory could then be a mean to estimate the dynamic yield strength PY of
a material. For example, for a steel bead of diameter d = 5 mm dropped from height H = 10 cm on concrete,
the maximum stress is P0 ≈ 300 MPa and, if PY∕P0 = 0.6, the dynamic yield strength would be PY ≈ 180 MPa,
which is greater than the typical values of PY for concrete (20–40 MPa) [The Engineering Toolbox, 2014] but of
the same order of magnitude.

An additional process can accommodate the discrepancy. If a spherical bead impacts a rough surface or as a
gravel impacts a flat surface, the equivalent radius of contact may be smaller than the radius of the impactor
(Figure 15). Table 1 shows that the radiated elastic energy Wel increases with the impactor radius R as R5 on
plates and as R3 on blocks. Then, if the radius of contact R is only 1.15 smaller on plates, the theoretical radi-
ated elastic energy Wel is 2 times smaller, and this explain the discrepancy observed for gravels on the plates
(Figures 7d and 7h). On blocks, if the effective radius of contact R is 2.1 times smaller, the radiated elastic
energy Wel is 10 times smaller, which could explain the small energy values measured on the marble block
(Figures 8e to 8h). The radius of contact R should be even smaller when gravels impact the rough blocks and
the radiated elastic energy Wel is then smaller (Figures 8d and 8h). By comparison, the characteristic frequen-
cies fmean and Δf are inversely proportional to the radius R (because Tc ∝ R) and are therefore less affected by
a change in this radius than the radiated elastic energy Wel. This is visible on Figure 9 because the frequencies
of the signal emitted by gravels are close to that of spherical beads.

As the effective radius of contact decreases for a given mass m, the stresses are concentrated on a smaller area
during the impact and plastic deformation is more likely to occur (see Appendix C). Interestingly, even though
the energy lost in plastic deformation is very important for impacts of gravels and on the rough blocks, the
measured radiated elastic energy Wel and frequencies fmean and Δf still follow well the scaling laws in mass
m and impact speed Vz predicted using Hertz’s model of impact of a sphere on a plane (Figures 7, 8, and 9).
Therefore, we expect that Hertz’s model should still be valid at first order on the field and, consequently, that
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Figure 15. Schematic of the contacts between a sphere and a rough surface and between a rough gravel and a flat
surface.

the radiated elastic energy Wel should be proportional to mV13∕5
z and that the characteristic frequencies fmean

and Δf should be proportional to 1∕Tc ∝ m−1∕3V1∕5
z . The problem is, however, to determine the coefficients

of proportionality in these relations because they depend on the rheological parameters of the impactor and
the ground (Table 1), on the fact that the impact is elastic or inelastic (Figures 2 and 3) and on the roughness
of contact, which are each extremely difficult to estimate practically. A solution may be to calibrate the coef-
ficients of proportionality of these relations on a given site by dropping some boulders of known mass m and
estimating their impact speed Vz with a camera. Once calibrated, these laws can be inverted as in section 2.2.3
and used to retrieve the masses m and impact speeds Vz of other rockfalls on the same site from the gener-
ated seismic signals. The advantage of this method is that it is not necessary to know the elastic parameters
of the ground. Even so, energy attenuation as a function of frequency during wave propagation within the
substrate needs to be evaluated in order to correct the measured signals.

5.2. Errors on the Estimation of the Masses and Impact Speeds
Here we comment the errors on our estimation of the impactor’s masses from measured seismic signals in
Figure 10. These errors are greater than that of Buttle et al. [1991] who managed to size submillimetric parti-
cles in a stream with a standard deviation less than 10%. However, their estimations were based on the impact
force and duration on the direct compressive wave, measured at the opposite of the impact on the target
block. Practically, this method is difficult to apply on the field because seismic stations are at the surface.
Furthermore, the force and duration of the impact are more complicated to estimate from the seismic signal
than the radiated elastic energy and the frequencies because they require a deconvolution process that
induce additional errors [e.g., McLaskey and Glaser, 2010]. Our method has the advantage to not be intrusive
and, in principle, exportable to field problems.

5.3. Application to Natural Rockfalls
Dewez et al. [2010] conducted field scale drop experiments of individual basalt boulders on a rock slope in
Tahiti, French Polynesia. The main objective of this study was to estimate hazards associated with rockfalls
in a volcanic context. Boulder trajectories were optically monitored using two cameras with 50 frames per
second. A photogrammetry technique then allowed the authors to compute the position of each boulder in
time with an error smaller than the boulder radius [Dewez et al., 2010]. In parallel, the seismic signal generated
by boulder impacts on the ground was recorded with a sampling frequency of 100 Hz by a board band
seismometer type STS located a few tens of meters away. Here we want to observe how the elastic energy
radiated by boulder impacts scales with the boulder mass and speed in this natural context.
5.3.1. Comparison of Field Measurements With Hertz’s Prediction
The waves generated by the impacts propagate in a very damaged and complex medium that may involve
several layers of different density. In this medium, viscous attenuation of energy can be very strong, especially
for high frequencies. For example, waves of frequency 100 Hz only propagate in the first centimeters or meters
deep below the surface. The attenuation of energy as a function of frequency can be evaluated, for example,
by measuring the signal emitted by a given impact at different distances, as we did in our laboratory exper-
iments [Farin et al., 2015]. Unfortunately, no estimation of the attenuation has been conducted in this field
study. We therefore assume a classical model of viscous attenuation of energy with distance r and multiply
the measured signals Ã(r, f ) by the factor exp

(
𝛾(f )r∕2

)
, with 𝛾(f ) = 2𝜋f∕(QcR), where Q is the quality factor of

the ground and cR is the phase speed of Rayleigh waves [Aki and Richards, 1980]. We use cR = 800 m s−1 as in
the Piton de la Fournaise volcano, Reunion Island, where the ground has a similar structure as in Tahiti [Hibert
et al., 2011]. Using this model with Q = 20 and typical boulder properties in these experiments, m = 1000 kg
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Figure 16. (a) Vertical vibration speed vz(r, t) generated by two successive impacts of a boulder of mass m = 326 kg on
the rock slope. (b) Spectrogram of the signal in Figure 16a. Darker shape represents higher energy (normalized). The
black lines highlight the triangular shape of the spectrograms. (c) Amplitude spectrum |Ṽz(r, f )| for the first impact, with
the peak fpeak and mean fmean frequencies and the bandwidth Δf . Dashed line: synthetic spectrum computed with the
convolution of Hertz’s [1882] force of elastic impact with Green’s function of Rayleigh waves. (d–f ) Radiated elastic
energy Wel for different boulders documented in Tahiti as a function of (Figure 16d) the mass m and of parameters
(Figure 16e) mV13∕5

z and (Figure 16f ) mV0.5
z , with associated coefficients of determination R2. (g) Ratio of the radiated

seismic energy Wel over the kinetic energy ΔEc lost during the impact as a function of the boulder mass m for
Vz = 5 ± 2 m s−1. Red full and dashed lines in Figures 16d–16g are adjustments to the data for “hard” and “soft”
impacts, respectively.
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and Vz = 10 m s−1, we estimate that if we do not correct the measured signals from viscous attenuation, we
measure 90% of the radiated elastic energy at r = 13 m from the source and 50% at r = 90 m. In contrast, for
Q = 5, i.e., for a more damaged medium, we would measure 90% of the radiated elastic energy at r = 3 m
and 50% at only r = 22 m. The corrected amplitude spectrum should in theory be equivalent to the emitted
spectrum. However, the spectrum cannot be corrected for all frequencies where the measured amplitude is
below the noise level. It is therefore important to record the seismic signals as close as possible to the impacts.
For the following computations, we use the quality factor Q = 10, which is of the order of the values obtained
by Ferrazzini and Aki [1992] in the similar context of Kilauea volcano in Hawai’i.

We first focus on the seismic signals emitted by the impacts of a boulder of mass m = 326 kg at r ≃ 30 m from
the seismometer (Figure 16a). The signals have a short duration ∼ 0.8 s and are impulsive, as the ones gener-
ated by bead impacts (e.g., Figure 6c). The impacts excite a frequency range from∼10 Hz to 40 Hz (Figure 16b).
Most of the recorded seismic spectra lies between 10 Hz and 20 Hz with a peak frequency fpeak ≈ 15.5 Hz,
a mean frequency fmean ≈ 18.4 Hz, and a bandwidth Δf ≈ 18.3 Hz (Figures 16b and 16c).

We compare the measured spectrum with a synthetic amplitude spectrum predicted by Hertz’s [1882]
theory of impact using equation (2). Green’s function used in the computation depends on the excited
mode. Deparis et al. [2008], Dammeier et al. [2011], and Lévy et al. [2015] showed that rockfall events
generate principally Rayleigh surface waves. Rayleigh waves develop in far field, i.e., for kr >> 1, where
k = 2𝜋f∕cR is the wave number [Miller and Pursey, 1954; Gimbert et al., 2014; Farin et al., 2015]. Using the phase
speed cR = 800 m s−1, we estimate that kr >> 1 when the frequency f is greater than about 4 Hz. Since the
recorded seismic energy is mostly between 10 Hz and 40 Hz, we can therefore reasonably use the far field
Green’s function of Rayleigh waves of equation (4) convolved with Hertz’s [1882] impact force to compute the
synthetic spectrum (Figure 16c).

The characteristics of the impactor are R = 0.35 m, m = 326 kg, and Vz = 11 m s−1. We assume a typical
Young’s modulus Ep = 10 MPa for a loose soil such that observed on the slope [Geotechdata.info, 2013]. Hertz’s
[1882] elastic theory then predicts that the duration of impact should be Tc ≃ 0.035 s (equation (9)). For
Rayleigh surface waves, the mean frequency should therefore be fmean = 1∕Tc ≃ 28 Hz and the bandwidth
Δf = 0.6∕Tc ≃ 17 Hz, which are close to the measured values (Table 2 and Figure 16c).

The amplitude of the synthetic spectrum is similar to that of the measured spectrum except around 15 Hz
where a peak of energy is observed in the measured spectrum (Figure 16c). The peak of energy may be due to
a resonance around 15 Hz of the seismometer or of the first sediment layers because it is observed on every
measured spectra [Schmandt et al., 2013; Farin, 2015]. The shape of the measured and synthetic spectrum
is very different. This may be due to plastic deformation, which is very important for impacts on loose and
fractured soil.
5.3.2. Elastic Energy Radiated by Boulders’ Impacts
Despite the discrepancy between the theory and the measurement, we observe how the elastic energy Wel

radiated by the impacts of all boulders depends on the boulder mass m and impact speed Vz . The calculation
of Wel is based on the integration of the energy flux over a cylinder surrounding the impacts [Hibert et al.,
2011; Farin et al., 2015]:

Wel = ∫
+∞

0
4𝜋rh𝜌pcR|Ṽ(r, f )|2 exp

(
𝛾(f )r

)
df , (44)

where h = cR∕f is the Rayleigh wavelength and |Ṽ(r, f )|2 = |ṼX (r, f )|2 + |ṼY (r, f )|2 + |ṼZ(r, f )|2 is the sum of the
squared time Fourier transforms of the vibration speeds in the three directions of space vX (r, t), vY (r, t), and
vZ(r, t), respectively. The coefficient 𝛾(f ) = 2𝜋f∕(QcR) is the same than that used to compute the synthetic
spectrum in the previous section, with cR = 800 m s−1 and Q = 10.

The nature of the contact between the boulder and the ground during the impact plays a crucial role on the
transfer of the seismic energy. Therefore, we separated the “hard” impacts, occurring on outcropping rock,
from the “soft” impacts, occurring on loose soil or on grass (Figures 16d–16g). The measured radiated elas-
tic energy Wel seems to be proportional to the mass m as predicted analytically for impacts on thick blocks
(Table 1 and Figure 16d). This dependance is clearer for soft impacts. However, the measured radiated elas-
tic energy Wel does not scale well with the parameter mV13∕5

z derived from Hertz’s theory (Figure 16e). We
adjust the power a of parameter mVa

z to obtain a better fit with Wel. The best fit is observed for power a ≃ 0.5,
i.e., with a much weaker dependence on the impact speed Vz than in theory, with Wel ∝ Vz

0.5 rather than
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Wel ∝ Vz
13∕5 (Figure 16f ). The scaling law in V0.5

z may be biased because boulders systematically impacted
loose soil when they reached high speeds Vz , while they often impacted outcropping rocks for lower speeds
Vz . The energy transfer is lower for “loose” impacts than for hard impacts, and this may then lead to the
observed weaker dependence in Vz (Figure 16g). As a matter of fact, the mean ratio of the radiated elas-
tic energy Wel over the kinetic energy ΔEc lost during the impacts is 1 order of magnitude higher for hard
impacts than for soft impacts (Figure 16g). Interestingly, the ratio Wel∕ΔEc is between 10−4 and 10−1, which is
in agreement with the values observed by Hibert et al. [2011].

No clear dependence on m and Vz was observed for the characteristic frequencies of the signal fmean and Δf .
These frequencies are between 10 Hz and 30 Hz, regardless of the contact quality, i.e., of the fact that the
impact is hard or soft (see Figure 92 in Chapter 4 of Farin [2015]).

An explanation for the discrepancy between observed and theoretical elastic energy Wel and for the fact that
we did not observe any trend for the frequencies may be that we cannot record frequencies higher than
50 Hz because the sampling frequency is 100 Hz. Impacts of boulders are expected to generate waves of
higher frequencies. For example, Helmstetter and Garambois [2010] dropped a boulder of similar dimensions
on the Séchilienne rockslide site in the French Alps. Seismic signals generated by the impacts were sampled
at 250 Hz by several seismic stations located a few tens of meters away. In the spectrogram of these signals,
energy is visible up to 100 Hz. As we previously observed in laboratory experiments, when we do not measure
the highest frequencies of the generated signal, the discrepancy between the theory and the measurement
increases (e.g., for small masses m in Figures 8a–8c). Another possibility is that the factor exp

(
𝛾(f )r

)
, with

𝛾(f ) = 2𝜋f∕(QcR), may be too simple to describe the wave propagation in such a damaged medium. Indeed,
multiple modes with different dispersion relations can be excited in different frequency range in such layered
media. However, the data are not sufficient to determine how wave disperse and attenuate within the ground
on this specific site.

Owing to the large scattering of the seismic data, it is difficult to neither validate nor invalidate the applica-
bility on the field of the analytical scaling laws developed in this paper. However, this study highlights several
challenges that need to be addressed in order to be able to retrieve the impact parameters in future seismic
studies of boulder impacts. If the radiated elastic energy or the characteristic frequencies of the emitted sig-
nals is underestimated, this will lead to either overestimate or underestimate the masses and impact speeds,
as evidenced in our laboratory experiments (Figure 10). Therefore, one should measure as much as possi-
ble the entire energy spectrum emitted by the impacts and, to do so, use a high sampling frequency, ideally
greater than 3∕Tc (see section 2.2.2). For example, when the impactor’s mass increases from m = 10 kg to
m = 2000 kg in the rockfalls experiments investigated here, the impact duration Tc increases from 0.01 s
to 0.06 s, respectively, and the sampling frequency should be at least from 300 Hz to 50 Hz, respectively.
Moreover, because energy at high frequencies attenuate very rapidly in fractured media, one should record
the signal a close as possible from the impacts, up to typically a few tens of meters away. Finally, one should
have a good knowledge of the elastic properties of the impactor and the ground in the vicinity of the impact,
as well as within the ground, i.e., how it disperses and attenuates the frequencies. This could be achieved using
several seismic stations recording at different distances from the source.

6. Conclusions

We developed analytical scaling laws relating the characteristics of the acoustic signal generated by an impact
on a thin plate and on a thick block (radiated elastic energy and frequencies) to the parameters of the impact:
the impactor’s mass m and speed before impact Vz and the elastic parameters. These laws were validated with
laboratory experiments of impacts of spherical beads of different materials and gravels on thin plates with a
smooth surface, which is an ideal case, and on rough thick blocks, which are closer to the case of the field.
Viscoelastic and elastoplastic dissipation occurred in the range of masses and impact speeds investigated. In
these experiments, the radiated elastic energy is estimated from vibration measurements, independently of
the other processes of energy dissipation. A number of conclusions can be drawn from our results:

1. The impactor mass m and speed Vz can be estimated from two independent parameters measurable
on the field of the seismic signal: the radiated elastic energy and a characteristic frequency, using
equations (27)–(30). The estimations of m and Vz are close to the real values within a factor of 2 and 3,
respectively, even when the impactor has a complex shape. If the radiated elastic energy is underestimated
(respectively, overestimated) by a factor of 10, the mass m and the impact speed Vz are underestimated
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(respectively, overestimated) by a factor of 1.5 and 2, respectively. We noted that the radiated elastic energy
is smaller when the surface roughness increases because the radius of contact is smaller. However, the sig-
nal characteristics measured during impacts of rough impactors on rough surfaces follows well the scaling
laws established for impacts of spherical beads on a plane surface.

2. We also established a quantitative energy budget of the impacts on the plates and blocks investigated, and
we estimated what should be this budget for natural rockfalls:

a. On the smooth plates, elastic waves, and viscoelastic dissipation are the main processes of energy
losses. Viscoelastic dissipation is major for impactors of diameter less than 10% of the plate thickness,
while elastic waves radiation represents only from 0.1% to 0.3% of the impact energy. When the bead
diameter increases, the energy lost in viscoelastic dissipation decreases while the energy radiated in
elastic waves increases. For beads of diameter larger than the plate thickness, almost all of the energy
is radiated in elastic waves.

b. On the rough blocks, elastic dissipation represents only between 0.03% and 5% of the lost energy.
In contrast, energy lost in other processes such as plastic deformation increases with the bead mass
from 50% to more than 99% of the lost energy because of surface roughness. The energy dissipated
in viscoelasticity decreases from 50% to 2% of the lost energy as the bead mass increases.

c. Most of the energy lost during a natural rockfall should be dissipated in plastic deformation or in trans-
lational or rotational modes of the impactors. Plastic or, in general, irreversible dissipation reduces the
energy radiated in elastic waves and is difficult to quantify. That being said, regardless of the impactor’s
mass and speed, the energy radiated in elastic waves may not be more than a few percent of the impact
energy. Energy lost in viscoelastic dissipation during the impact should be negligible in the range of
masses detected by seismic stations on the field.

The impact experiments with rough impactors on rough substrates demonstrated that Hertz’s model can be
used to describe at first order the dynamics of an impact when the contact surface is not plane. Thus, we
expect that the simple analytical relations derived in this paper between the characteristics of the impact
and that of the emitted signal can allow us to better understand the process of elastic waves generation by
impacts on the field. The major limitation for estimating the impact properties from the signal on the field
would certainly be the fact that a great part of the radiated energy is lost in high frequencies during wave
propagation in highly fractured media. Therefore, we encourage future seismic studies of rockfalls to record
signals as close as possible to the impacts and to use a high-frequency sampling, at least 3 times the inverse
impact duration. For example, for typical masses from 10 kg to 2000 kg detected by seismic stations on the
field, we estimated that the impact duration varies from 0.01 s to 0.06 s, respectively, and that the sampling
frequency should then be at minimum from 300 Hz to 50 Hz, respectively. In addition, it is important to correct
measured seismic signals from wave dispersion and attenuation within the substrate. If these conditions are
fulfilled, the scaling laws derived in this study should provide estimates of the order of magnitude of the
masses and speeds of the impactors. Finally, in addition to direct field applications, the scaling laws developed
for plates can be also useful in the industry as a nonintrusive technique to estimate the size and speed of
particles in a granular transport and in shielding problems.

Appendix A: Demonstration of the Analytical Scaling Laws for the Radiated
Elastic Energy

The objective of this appendix is to demonstrate the analytical scaling laws showed in Table 1 for the radiated
elastic energy Wel as a function of the impactor’s mass m and speed Vz for thin plates and thick blocks.

The radiated elastic energy is defined by

Wel = ∫
+∞

−∞
|Fz(t)|2Yel(t)dt = 2∫

+∞

0
|F̃z(f )|2Ỹel(f )df , (A1)

with Ỹel(f ) the radiation admittance, which has a different expression on thin plates and on thick blocks.

A1. Thin Plates
On thin plates, Ỹel(f ) is independent of frequency f and is given by

Yel =
1

8
√

B𝜌ph
. (A2)
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Figure A1. Coefficient 𝛽 defined by equation (A7) as a
function of the Poisson ratio 𝜈p .

where B is the bending stiffness and 𝜌p and h are the
plate density and thickness, respectively.

Therefore,

Wel =
1

8
√

B𝜌ph

F2
0𝛿z0

Vz ∫
+∞

−∞
|g(t∗)|2dt∗, (A3)

with t∗ = 𝛿z0t∕Vz and where g(t∗) is the shape func-
tion represented on Figures 1b and 1c. The integral
in this equation is noted Cplate and depends on the
inelastic parameters 𝛼 and PY∕P0, i.e., of the fact
that the impact is elastic, viscoelastic, or elasto-
plastic (Figures 2a and 2b). For an elastic impact,
Cplate = 1.21.

Developing F0 and 𝛿z0 as functions of the impact parameters using their expressions in equations (5) and (8),
respectively, we get

F2
0𝛿z0

Vz
=
(4

3

)1∕3 (5
4

)8∕5
𝜋−1∕15𝜌

−1∕15
s E∗2∕5m5∕3V11∕5

z . (A4)

Finally, equations (A3) and (A4) give the scaling law relating the radiated elastic energy Wel to the impact
parameters on thin plates:

Wel = a1Cplatem5∕3V11∕5
z , (A5)

with a1 ≈ 0.18E∗2∕5∕(𝜌1∕15
s

√
B𝜌ph).

A2. Thick Blocks
On thick blocks, the radiation admittance Ỹel(f ) was computed in time Fourier domain by Miller and Pursey
[1955]:

Ỹel(f ) =
2𝜋𝜉4𝛽f 2

𝜌pc3
P

, (A6)

where 𝜉 =
√

2(1 − 𝜈p)∕(1 − 2𝜈p), cP is the compressive wave speed and 𝛽 is the imaginary part of

∫
X

0

x
√

x2 − 1
f0(x)

dx, (A7)

with f0(x) = (2x2 − 𝜉2)2 − 4x2
√
(x2 − 1)(x2 − 𝜉2) and X , a real number greater than the positive real root of f0.

The coefficient 𝛽 depends only on the Poisson’s ratio 𝜈p (Figure A1, see the Appendix of Farin et al. [2015], for
details on the computation of 𝛽).

Therefore,

Wel =
4𝜋𝜉4𝛽

𝜌pc3
P

F2
0 Vz

𝛿z0 ∫
+∞

0
f ∗2|g̃(f ∗)|2df ∗, (A8)

with f ∗ = Vzf∕𝛿z0 and g̃(f ∗) is the time Fourier transform of the function g(t∗) represented on Figures 1b and 1c.
We note Cblock the integral in this equation. Cblock depends on the inelastic parameters 𝛼 and PY∕P0 (Figures 2a
and 2b). With an impact force Fz(t) given by Hertz’s [1882] elastic theory, i.e., for 𝛼 = 0 and PY∕P0 = 1, we have
Cblock = 0.02.

If we develop F0 and 𝛿z0 as functions of the impact parameters, we get

F2
0 Vz

𝛿z0
= 4

3

(5
4

)4∕5
𝜋−1∕5𝜌

−1∕5
s E∗6∕5mV13∕5

z . (A9)

Finally, inserting equation (A9) into equation (A8) we obtain the analytical expression of the radiated elastic
energy Wel on thick blocks:

Wel = a2CblockmV13∕5
z , (A10)

with the coefficient a2 ≈ 15.93𝜉4𝛽E∗6∕5∕(𝜌p𝜌
1∕5
s c3

P).
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Figure B1. Cumulated radiated elastic energy Wcumul
el

for the impact of steel beads of different diameters d (different
colors) on (a) the PMMA plate, (b) the glass plate, (c) the concrete block, and (d) the marble block, as a function of
frequency f . Full line: experiments, dashed line: synthetics obtained with the convolution of Green’s function with Hertz’s
[1882] force of elastic impact.

Appendix B: Cumulative Distribution of Energy
In this appendix, we show how the radiated elastic energy radiated by impacts is distributed over
the frequencies.

The cumulative distribution of the radiated elastic energy shows that impacts generate signals with higher
frequencies as the bead diameter d decreases, regardless of the structure (Figure B1). It is clear that the
sensors used in our experiments do not measure energy for frequencies higher than 50 kHz. This is not a
problem for impacts on the PMMA plate and for beads of diameter d larger than 5 mm because all of the
radiated elastic energy is in theory below 50 kHz (Figure B1a). However, for impacts of beads of 1 mm in
diameter on glass, concrete, and marble, more than 50% of the energy is for frequencies higher than 50 kHz
(Figures B1b to B1d). Some of the radiated energy may not be measured for the smallest beads investigated.
Note that for experiments on the glass plate and on the concrete and marble blocks, the profile of the cumu-
lative energy is steep and saturates to a given frequency f ≈ 38 kHz, f ≈ 30 kHz, and f ≈ 40 kHz, respectively,
as the bead diameter d decreases (Figures B1b to B1d).

Appendix C: Influence of the Impactor Shape on the Energy Budget
In this appendix, we investigate the energy budget of impacts of gravels on the glass plate.

When a spherical bead is dropped without initial speed and rotation on a smooth surface it rebounds almost
vertically and without spin. In contrast, a rough gravel rebounds to a much smaller height and can reach a large
horizontal distance x with a high-rotation speed 𝜔r up to about 400 rad s−1, depending on the face it lands on
(Figure C1a). For these complex impactors, the kinetic energy converted in translational and rotational modes
is therefore not negligible. The translational kinetic energy of rebound is E′

c =
1
2

mV ′2, where V ′ = V ′
xux+V ′

zuz is
the rebound speed in the cartesian frame (0,ux ,uz). V ′

x ≈ 0 cm s−1 for spherical beads but varies from 5 cm s−1

to 40 cm s−1 for gravels. The rotation energy is E𝜔 = 1
2

I𝜔2
r , where I is the moment of inertia of the gravel, given

by I = 2
5

mR2 if we assume that the gravel is spherical with an equivalent radius R. From camera recordings,
we estimate that 32% ± 17% of the impact energy Ec is converted into translational energy of rebound E′

c

and that 13% ± 11% is converted into rotational energy E𝜔. Regardless of the shape and mass m of the
gravel, less energy is converted into translational energy E′

c as its rotates faster after the impact (Figure C1b).
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Figure C1. (a) Different rebound trajectories followed by the same gravel of mass m = 0.23 g dropped from height
H = 10 cm several times on the glass plate (full lines) and one rebound trajectory followed a spherical bead of diameter
d = 4 mm dropped from the same height H (dashed line). Gravels of different masses m (different symbols) are dropped
without initial spin from height H = 10 cm on the glass plate. (b) Translational kinetic energy E′c of the gravels after
rebound as a function of their rotation speed 𝜔r after rebound. (c–e) Percentage of impact energy lost in elastic waves
Wel∕Ec as a function of the percentage of the impact energy Ec converted (Figure C1c) in rebound translational energy
E′c , (Figure C1d) in rotational energy E𝜔 , and (Figure C1e) in plastic deformation Wplast.

The percentage of energy radiated in elastic waves Wel∕Ec is 3.3% ± 1.8% and seems independent of the
energy converted in translation energy E′

c∕Ec or in rotational modes E𝜔∕Ec (Figures C1c and C1d).

In section 4.4.1, we adjusted the inelastic parameter D on the variation of the coefficient of restitution e to
estimate the energy lost in viscoelastic dissipation (Figure 12). This is not possible for gravels because of the
large dispersion in the results. As granite has similar elastic properties than glass, we assume that D is the
same than for glass beads impacts on the glass plate, i.e., D = 80 ns (see Table 5). Therefore, the viscoelastic
dissipation Wvisc for impacts of gravels on the glass plate may represent 3.7%± 1% of Ec . The rest of the energy
(48% ± 14%) is lost to deform plastically the gravel and or the glass plate. This is therefore the main process
of energy dissipation for gravels impacts.

The proportion of energy radiated in elastic waves Wel∕Ec seems to decrease when more energy is lost in
plastic deformation (Figure C1e), which is in agreement with the elastoplastic model (Figure 2a).

Appendix D: Determining Impactor Momentum From Low Frequencies

In some experiments on Figure 10, the estimations of m and Vz are affected because the highest frequencies
of the generated vibration are not measured by the sensors or because of a resonance. The purpose of this
appendix is to show that we can use the low-frequency content of the signal to estimate the momentum mVz

of the impactor.
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Figure D1. Measured amplitude spectrum |Ãz(r, f )|
(black line) and synthetic spectrum (thick blue line) for
the impact of a steel bead of diameter 5 mm on (a) the
glass plate and (b) the concrete block. The blue dashed
line is the power law approximation for low frequencies
of the synthetic spectrum. The red dashed line is an
adjustment of the low frequencies content of the
measured spectrum with the power law.

For frequencies f ∼ 0 Hz, we assume as Tsai et al. [2012]
that the impact duration Tc is instantaneous relative
to the frequencies of interest. The time Fourier trans-
form F̃(f ) of the Hertz [1882] force F(t) then becomes
constant in frequency:

F̃(f ) = ∫
+∞

−∞
F(t) exp(−ift)dt ∼ ∫

+∞

−∞
F(t)dt, (D1)

where, if we normalize the force F(t) by its maximum
value F0 and time t by the impact duration Tc and
develop their respective expressions (equations (9)
and (10)),

∫
+∞

−∞
F(t)dt ≈ 2mVz. (D2)

The amplitude spectrum of the vibration acceleration
can then be approximated by [Aki and Richards, 1980]

|Ãz(r, f → 0)| ∼ 2mVz(2𝜋f )2|G̃zz(r, f )|. (D3)

Using the expression of Green’s function |G̃zz(r, f )|
given by equations (3) and (4) on plates and blocks,
respectively, we show that

|Ãz(r, f → 0)| ∼ af b, (D4)

with a≈0.73mVz
1

B
√

r
( B
𝜌ph

)5∕8 and b=3∕4 on plates and

a≈100mVz
𝜉2

𝜇cP

√
x0(x2

0−1)

f ′0(x0)

√
2cP

𝜋r
and b=5∕2 on blocks.

In order to determine the momentum mVz of a steel bead of diameter 5 mm dropped from height 10 cm on
the glass plate and on the concrete block, we adjust the power law (D4) with the measured spectra |Ãz(r, f )|
for frequencies f < 10 kHz (Figure D1). The obtained momentum is mVz ≈ 6.9.10−4 kg m s−1 on glass plate
and mVz ≈ 6.33.10−4 kg m s−1 on the concrete block, which is in good agreement with the real momen-
tum mVz ≈ 6.85.10−4 kg m s−1. Finally, if either m or Vz is known, this method can be used to estimate the
other parameters.

Notation

cP , cR Compressional and Rayleigh waves speed (m s−1)
D Viscoelastic coefficient (s)

d, R Bead diameter and radius (m)
Ec Initial kinetic energy (J)

Es, Ep, 𝜈s, 𝜈p Young’s modulii (Pa) and Poisson’s coefficients
of the sphere and the plane

E∗ Equivalent Young’s modulus (Pa)
e Coefficient of restitution (−)

F, Fz Force and normal force (N)
F0, P0 Maximum force and stress of elastic impact (N; Pa)

Fmax, 𝛿max Maximum force and penetration depth of inelastic impact (N)
f , 𝜔 Frequency and angular frequency (s−1)

fpeak, fmean,Δf Peak, mean frequencies and bandwidth (Hz)
g Acceleration of gravitation (m s−2)
H Height of fall (m)
h Plate thickness (m)
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K Parameter in Hertz’s [1882] theory
k Wave number (m−1)
V Volume (m3)

m Mass (kg)
r Distance from the impact (m)

Tc Impact duration (s)
t Time (s)

ui Normalized vector of the direction i
vi, ai Vibration speed and acceleration in the direction ui (m s−1; m s−2)

Ṽi Time Fourier transform of vi and ai , respectively (m; m s−1)
Vz, V ′ Impact speed and speed after rebound (m s−1)
vg, v𝜙 Group and phase velocities (m s−1)

Wel, ΔEc Radiated elastic energy and total energy lost (J)
Wth

el , Wth′

el Theoretical radiated elastic energy predicted by
Hertz’s [1882] and Zener’s [1941] models (J)

Wvisc, Wother, E′
c, E𝜔 Energy lost in viscoelastic dissipation, in other processes,

kinetic energy of rebound and rotation (J)
x, y, z Coordinates in the cylindric reference frame of the block (m)
Yd , Pd Dynamic yield stress and dynamic yield strength (Pa)

𝛼 Viscoelastic parameter (−)
𝛽 Coefficients involved in energy calculation (−)
𝛾 Attenuation coefficient of energy with distance (m−1)
𝛿z Penetration depth and maximum of this depth during the impact (m)
𝜆Z Zener’s [1941] parameter (−)

𝜌s, 𝜌p Densities of the sphere and the plane (kg m3)
𝜏 Characteristic time of energy attenuation within the structure (s)

𝜒 , 𝜂 Bulk and shear viscosities (Pa s)
𝜔r Rotation speed (rad s−1)
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