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S U M M A R Y
Temporal variations in the elastic behaviour of the Earth’s crust can be monitored through the
analysis of the Earth’s seismic response and its evolution with time. This kind of analysis is
particularly interesting when combined with the reconstruction of seismic Green’s functions
from the cross-correlation of ambient seismic noise, which circumvents the limitations imposed
by a dependence on the occurrence of seismic events. In fact, because seismic noise is recorded
continuously and does not depend on earthquake sources, these cross-correlation functions
can be considered analogously to records from continuously repeating doublet sources placed
at each station, and can be used to extract observations of variations in seismic velocities.
These variations, however, are typically very small: of the order of 0.1 per cent. Such accuracy
can be only achieved through the analysis of the full reconstructed waveforms, including later
scattered arrivals. We focus on the method known as Moving-Window Cross-Spectral Analysis
that has the advantage of operating in the frequency domain, where the bandwidth of coherent
signal in the correlation function can be clearly defined. We investigate the sensitivity of this
method by applying it to microseismic noise cross-correlations which have been perturbed by
small synthetic velocity variations and which have been randomly contaminated. We propose
threshold signal-to-noise ratios above which these perturbations can be reliably observed. Such
values are a proxy for cross-correlation convergence, and so can be used as a guideline when
determining the length of microseismic noise records that are required before they can be used
for monitoring with the moving-window cross-spectral technique.
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1 I N T RO D U C T I O N

Stress field variations in time modify the elastic behaviour of the
Earth’s crust, hence they can be recovered through the analysis of
the Earth’s seismic response and its temporal evolution. This is par-
ticularly true when earthquake codas, microtremors or microseismic
noise are considered, as these are very sensitive to the effects of the
often small perturbations in the Earth’s elastic properties as they
sample it both randomly and repeatedly (Aki, 1957; Sato & Fehler,
1998). Much effort has been devoted to the study of waveform
variations in space and time for the purpose of understanding the
dynamic behaviour of the crust. Of particular interest are tecton-
ically and volcanically active regions in which stress changes are
frequent and may precede earthquakes and volcanic eruptions. Ini-
tially, almost all studies focused on the spatio-temporal behaviour
of coda waves, where the observation of variations in their am-
plitude found a possible application in the forecasting of volcanic
activity (Aki & Ferrazzini, 2000). The inclusion of phase infor-

mation to the analysis (Poupinet et al. 1984) gave rise to a new
approach which led to the detection of relative variations in seismic
velocity between earthquake doublets and multiplets. In the same
way, the seismic coda wave interferometry technique developed by
Snieder et al. (2002) has confirmed the existence of detectable pre-
cursory crustal changes (Grêt et al. 2005; Wegler, Lühr, Snieder &
Ratdomopurbo), but is only practicable in cases where records of
highly similar earthquake doublets are available.

More recently, seismic noise has become an increasingly popular
and promising area of study, as it circumvents the limitations im-
posed by a dependence on the occurrence of seismic events. This is
due to the possibility of retrieving seismic Green’s functions from
the cross-correlation (cc) of records of a random seismic wavefield
taken at various locations within a region of interest (Lobkis &
Weaver, 2001; Weaver & Lobkis, 2001; Campillo & Paul, 2003;
Shapiro & Campillo, 2004; Sabra et al. 2005; Shapiro et al. 2005).
Indeed, the use of ambient noise cc for monitoring has been shown
to be robust even when conditions prevent the full reconstruction
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Figure 1. Map of stations (named black squares) used in this study. Inset: La Réunion island. The black box outlines the part of Piton de la Fournaise shown
in the main panel.

of the seismic Green’s function (Hadziioannou et al. 2009; Weaver
et al. 2009).

Because seismic noise is recorded continuously and does not
depend on earthquake sources, these cc functions can be consid-
ered analogously to records from continuously repeating doublet
sources placed at each station, and can be similarly used to extract
observations of variations in seismic velocities.

The main idea for monitoring the evolution of seismic velocities
over time using seismic noise is to compare ‘current’ cc functions
that represent the situation at a given time period to ‘reference’
functions that represent an average background state of the stud-
ied media. We can distinguish between two different approaches
that are used for the extraction of seismic velocity variations from
cross-correlations and operate in the time and frequency domains,
respectively. The first method, known as Coda Wave Interferometry,
was described by Snieder (2006), and later evolved to Passive Im-
age Interferometry (Sens-Schönfelder & Wegler, 2006; Wegler et al.
2009) for noise sequence cross-correlations. The second method has
been named Moving-Window Cross-Spectral Analysis (MWCS) by
Ratdomopurbo & Poupinet (1995) and is the focus of this study. In
fact, although approaches in both the time and frequency domains
have found interesting applications showing similar sensitivities
(Wegler et al. 2009), the MWCS technique has the advantage of op-
erating in the frequency domain, where the bandwidth of coherent
signal in the correlation function can be clearly defined.

The main goal of this paper is to assess the accuracy of the ve-
locity variations measured from noise cross-correlations with the

MWCS technique and, in particular, how this accuracy depends
on the quality (i.e. signal-to-noise ratio, SNR) of the reconstructed
cc functions. We start by briefly introducing the main concepts of
the MWCS method with most of the technical details described in
Appendix A. Then, we use a set of noise cross-correlations com-
puted from records of the seismic stations of the Piton de la Four-
naise volcano (La Réunion) monitoring network shown in Fig. 1.

First, we study the convergence of these cc functions and their
fluctuations in the time and frequency domains. Then, we construct
a set of synthetic reference and current cc functions by stretching the
observed cc functions to mimic velocity variations within the media
and by adding random noise with spectral properties similar to
observed random variations. We apply the MWCS measure to these
synthetic cc functions and compare the inferred velocity variations
with known a-priori introduced values. We finally propose threshold
values of SNR above which small velocity variations can be reliably
retrieved and subsequently interpreted.

2 M OV I N G - W I N D OW C RO S S - S P E C T R A L
A NA LY S I S

The MWCS technique was first introduced by Poupinet et al.
(1984) for the retrieval of relative velocity variations between earth-
quake doublets. More recently, Brenguier et al. (2008a,b) exploited
this technique by applying it to seismic noise records, taking ad-
vantage of the possibility of treating noise cross-correlations in
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analogy with doublets. Here we describe only the general purpose
of the technique, leaving all computational details to Appendices A
and C.

This analysis is applied to time-series which are computed by
cross-correlating the noise sequences recorded at two different seis-
mic stations, for all possible station pairs. The preliminary step for
the analysis is to build up at least one reference and several current
cross-correlations. Since, for computational purposes, the contin-
uous noise records are cut into short sequences (e.g. one for each
day or hour), it is necessary to stack a certain number of single cc’s.
In this framework, the reference and current functions are defined
by the number of summed cc’s: N ref and N cur, respectively. The
only requirement is that N ref " N cur to ensure the reference cc is

representative of a background value, while the current cc contains
information on the actual state of the crust.

For any couple of reference, ccref , and current, cccur, functions,
the technique combines two steps. The first step consists in the
computation of the time-delay between the two signals within a
series of overlapping windows. The second step is the evaluation
of the relative velocity variation associated to the current function
with respect to the reference. In this second step, it is assumed, for
simplicity, that the seismic wave propagation velocity is perturbed
homogeneously within the studied media.

It is important to note that the first operation is executed in
the spectral domain, through the study of the phase of the cross-
spectrum, allowing for precise selection of the frequency band on

Figure 2. The calculation of SNR. (a) A set of thirty single-day cross-correlation functions (grey curves) and their stacked mean (solid black curve). The
dotted black curve is the signal envelope of the stack, and is smoothed with a 10-s wide cosine window. (b) The smoothed noise measured from this set of
cross-correlations. (c) The resulting SNR is the ratio of the signal envelope and the noise.
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the basis of the coherency between the two windowed cc’s (see
Section A1 in Appendix A). Each computed delay-time corresponds
to a cross-correlation lag-time, which is taken as the central point
of the window. Therefore, the second step involves the evaluation
of the trend, δt/t, of the delay-time estimates over the whole length
of the signals (see Fig. A1). The slope of their linear regression in-
dicates, to a first approximation, the relative homogeneous velocity
perturbation of the current cc with respect to the reference cc.

Critical points in the MWCS analysis are the choices of N ref ,
N cur, the length and overlap of each window and the total number of
windows which are used. These are all required for the first step. The
choice of these parameters will depend on the characteristics of the
cc functions such as their length, frequency content and how fast the
signal decays below the noise level. The aim of our work is to test the
reliance of both the resolution and accuracy of the measurements
on the quality of the cc functions, which can be quantified in terms
of their SNR.

3 R A N D O M F LU C T UAT I O N S A N D
C O N V E RG E N C E O F O B S E RV E D N O I S E
C RO S S - C O R R E L AT I O N S

Measuring the SNR of a stacked set of cc functions is needed
to distinguish between stacks from which reliable delay-times can
be measured, and those from which they cannot. Furthermore, the
simulated SNR of the cross-correlations we use in our tests must be

compatible with this measure. We employ the method described by
Larose et al. (2007), which is summarized below.

First, to estimate the level of noise, σ (N , t), in a stack, we measure
the variation between each constituent cross-correlation function,
cc(t), at each lag-time, t, as follows

σ (N , t) =

√
〈cc(t)2〉 − 〈cc(t)〉2

N − 1
. (1)

Here, 〈·〉 denotes the average over N single functions. We then
measure the level of signal, s(N , t), in the stacked cross-correlation
by taking its Hilbert envelope

s(N , t) = |〈cc(t)〉 + i H (〈cc(t)〉)| , (2)

where H(·) denotes the Hilbert transform of the stacked function
〈cc(t)〉 and i is the imaginary unit. After we smooth s(N , t) and σ (N ,
t) with a 10-s wide sliding cosine window, the SNR of the stacked
cc function can be estimated

SNR(N , t) = s(N , t)
σ (N , t)

. (3)

Fig. 2 demonstrates the measurement of SNR using this method.
The plotted cross-correlations are from stations DSR and TCR near
the summit of Piton de la Fournaise volcano, La Réunion (Fig. 1),
during the 30 days preceding an eruption on its northern flank
(Peltier, 2007). Neither the variation between the daily functions
nor the estimated signal are constant with t. The resulting SNR,
however, is less variable. For the purpose of our tests, we simulate

Figure 3. A plot of SNR versus number of stacked days (N). Results are separated into bins of ln(N) and ln(SNR). Counts are plotted as shades of grey after
normalization within each column of the plotted grid. Dark shaded bins have high counts relative to lightly shaded bins. SNR is averaged over |t| > 10 s. The
dashed curve and displayed slope are from a linear regression of the plotted values.
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MWCS: assessment of resolution and accuracy 871

a SNR which is constant for all t when we add noise to our cc
functions.

Fig. 3 shows how the SNR of a cross-correlation stack depends
on N . Here, we stack various numbers of consecutive daily cross-
correlations from stations DSR and TCR. Days of missing data and
of eruptive activity are skipped, and the plotted values of N are

the number of remaining days. This plot shows that SNR grows
at a rate which is just less than proportional to

√
N . While SNR

appears to increase monotonically with N , it may in many instances
be affected by drastic changes in the geology of the region under
investigation. In this example, we avoid the collapse of Dolomieu
crater at the start of 2007 on the summit of Piton de la Fournaise

Figure 4. Relative δt/t error estimates versus SNR for station pair DSR–TCR. Each panel pertains to a different range of |δt/t|. Dashed curves and displayed
slopes are obtained via linear regressions of the plotted values.
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Figure 5. Lines of best fit determined from relative δt/t error estimates for (a) stations DSR–TCR and (b) BOR–SFR. One line is plotted for each value of
|δt/t| (see legend).

volcano by only using cross-correlations between the years 1999 and
2006.

Fig. 4 shows the relationship between the error estimated by
the MWCS technique [eb defined by eq. (A12) in Section A2 of
Appendix A] and the SNR calculated above. Here, current- and
reference-functions are formed by grouping daily cross-correlations
from stations DSR–TCR into 30-day and 300-day stacks, respec-
tively. For each current and reference function pair between the
years 1999 and 2006, we measure delay-times within 6 s wide lag-
time windows. We then attribute the mean current function SNR
within each window to its corresponding delay-time δt. Finally, we
calculate δt/t along with its accompanying error as explained in
Appendix A. This error, expressed relative to δt/t, is plotted against
the mean of the attributed SNR values. For each of the plotted
ranges of |δt/t|, these errors appear to be anti-correlated with SNR.
Fig. 5 summarizes these observations for station pairs DSR–TCR
and BOR–SFR. These plots show a consistent inverse proportional-
ity between the errors and the calculated SNR values, verifying that
this measure of SNR may be eventually used to assess the quality
of the δt/t measurement obtained from noise correlations.

4 S Y N T H E T I C C RO S S - C O R R E L AT I O N
F U N C T I O N S

To test the sensitivity of the MWCS technique, we construct a
synthetic data set as follows: first, we take a reference func-
tion from real cross-correlations of seismic noise, then stretch it
to simulate a series of homogeneous seismic velocity changes.
This stretch is achieved by resampling the cross-correlations with
a Fourier-transform based interpolation. Effectively, this involves
zero-padding the cross-correlation in the Fourier-domain, then tak-
ing the inverse transform. When the original sampling interval is
applied, the interpolated cross-correlation becomes a stretched ver-
sion of the original. We then add random noise to each stretched
cc function to simulate a set of possible SNR. Finally, treating the
original function as the reference, and each stretched, noise-added
function as the current function, we attempt to recover the applied
stretch using the MWCS method and to see how the resulting errors
depend on the level of the added noise. For these tests it is impor-
tant to use synthetic noise with properties close to the real random
fluctuations of the observed cc functions. Therefore, we first char-

acterize the spectra of these observed fluctuations and then propose
a procedure to simulate a random noise series with defined spectral
properties.

4.1 Spectrum of the observed random fluctuations

A simple way to view a pair of stacked current and reference cc
functions is to treat the current function, cccur(t), as a contaminated
version of the relatively noiseless reference function, ccref (t).

cccur(t) = ccref (t) + n(t) (4)

To observe one realization of the impinging noise, n(t), we simply
subtract the current function from the reference function.

Fig. 6 shows an example of a current and a reference function
computed for stations DSR and TCR on Piton de la Fournaise vol-
cano, La Réunion. The reference function is a stack of the 300 days
preceding an eruption on the volcano’s south-eastern flank (Peltier,
2007), while the current function is a stack of the last 30 of those
days. Although the level of the noise appears to be relatively low
compared to that of the reference function, examination of its spec-
trum reveals that the amplitude of the noise is at least comparable
to that of the reference function at certain frequencies.

For every station pair, we calculate n(t) for all available current
and reference function pairs between the years 1999 and 2006. Then,
by averaging their squared-amplitude spectra, we observe a typical
noise spectrum which we can use to contaminate our synthetically
stretched cc functions (e.g., Figs 6c and d).

4.2 Simulating random noise with pre-defined spectra

To contaminate our synthetic cc functions, we randomly perturb
each value by an amount drawn from a Gaussian distribution. The
standard deviation of this distribution is chosen as follows

σsynth(t) = s(t)
SNR(t)

, (5)

where s(t) is the signal envelope of the synthetic function, and
SNR(t) is the desired SNR. We discuss whether or not the use of a
Gaussian distribution to simulate noise in this way is appropriate
for our cross-correlations in Appendix D.
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Figure 6. Observation of noise in real cross-correlation stacks. (a) A 300-day reference stack (dashed curve) and its associated 30-day current stack (solid
curve). (b) The difference between the reference and current stack is taken as an observation of noise. Small lag-times are omitted from the calculation as they
are not used for delay-time estimation. (c) and (d) Amplitude spectra of the negative-lag and positive-lag segments, respectively, of the observed noise (solid
curves) and the reference stack (dashed curves).

To ensure that the noise exists in the appropriate frequency band,
we apply the method described by Percival (1992) to produce a ran-
dom time-series which shares the same spectrum as that observed in
real data. After normalizing to unit standard deviation, we scale the
resulting noise by σ synth(t), then add it to our synthetic cc function.

Fig. 7 demonstrates how noise is prepared in this way. The original
function is a stack of all available daily cross-correlations computed
between stations DSR and TCR in the year 2002. Noise is generated
using the spectrum which is observed for this station pair, then
scaled to produce a constant SNR. This noise targets the frequency
range in which real noise is observed and in which delay-times are
to be later measured.

5 R E S U LT S O F S Y N T H E T I C T E S T S

For every station pair, we simulate 1000 random synthetic realiza-
tions of current cc functions with predefined stretching coefficients
mimicking velocity perturbations and predefined SNR. Then, we
analyse the resulting set of δt/t (stretch) estimates and their accom-
panying errors.

We show results of sensitivity tests for vertical-component
records from two pairs of stations on Piton de la Fournaise volcano,
La Réunion. For each station pair (BOR–SFR, and DSR–TCR), we
stack every available daily cc function between the years 1999 and
2006 to construct our reference function, then filter between 0.1 and
1.0 Hz.
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Figure 7. Addition of random noise to a synthetic cross-correlation function from stations DSR and TCR. The signal level (a, dotted curve) is estimated from
the original function (solid curve). Panel (b) shows the spectrum of the cross-correlation function. Random Gaussian noise (c) is produced with a spectrum (d)
that simulates that of the noise which is observed for the station pair. This noise is scaled in time (e and f), then added to the original cross-correlation function
(g and h).

To construct current functions, we stretch these reference cross-
correlations by a range of values, S = {0.01 per cent, 0.02 per
cent, . . . , 0.10 per cent}, then add noise to simulate SNR = {1,
2, . . . , 10}. Finally, we use 6-s wide lag-time windows which over-
lap by 3 s to compute delay-times (See Appendix A).

For each pair of simulated stretch and SNR values (S, SNR), we
obtain 1000 stretch estimates, Si, i ∈ [1, 1000], and their associ-
ated least-squares errors, ei (standard deviations) from the MWCS
technique. Fig. 8 shows the distribution of these estimates for two
different values of SNR. In both cases, these estimates form an ap-

proximately bell-shaped distribution centred around the true stretch
of 0.05 per cent. In the case of low SNR, these estimates form a
wide distribution (Fig. 8a) due to the high level of noise in the
cross-correlations, and we cannot confidently recover δt/t. When
SNR is increased (Fig. 8b), the distribution narrows, and δt/t is
better resolved.

To quantitatively assess the level of systematic error in each set
of estimates, we calculate their relative bias as follows

b(S, SNR) = 〈Si 〉 − S
S

. (6)
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Figure 8. Histograms for two sets of stretch estimates. (a) The applied stretch is 0.05 per cent and the simulated SNR is 3. (b) The applied stretch is unchanged,
but the simulated SNR is increased to 8. The reference cross-correlation is from stations DSR and TCR.

Figure 9. Relative bias calculated for each (S, SNR) pair using eq. (6). Cross-correlation functions are taken from (a) stations DSR–TCR and (b) stations
BOR–SFR. Light colours indicate a small relative bias.

Fig. 9 shows this measure for stations DSR–TCR (Fig. 9a) and
BOR–SFR (Fig. 9b). For both station pairs, the relative bias is never
more than a few per cent, provided the simulated stretch and SNR
are large enough (say, above 0.02 per cent and 3, respectively). This
suggests the MWCS method introduces very little systematic error.

To assess the total relative error over the 1000 trials for each (S,
SNR) pair, we calculate their misfit from the true stretch as follows

etotal(S, SNR) = 1
S

×

√∑
(Si − S)2

1000 − 1
. (7)

This incorporates both the systematic and the random error in each
set of 1000 Si estimates. Fig. 10 shows these measures for the two
station pairs described above. Here, colours indicate the level of
error, expressed as a percentage of the true stretch. As expected,
this error decreases as either the applied stretch or the simulated
SNR are increased.

We compare this error, etotal, evaluated from the synthetic test
with errors evaluated from the least-squares fit during the MWCS
analysis (Section A2 in Appendix A). For every synthetic current
cc function, we evaluate the least-squares error and then compute
its mean value for a given pair of stretching coefficient and SNR
〈ei〉(S, SNR). Fig. 11 shows the ratio of errors estimated from the

synthetic test and from the MWCS least-squares fit for station pairs
DSR–TCR and BOR–SFR. For both station pairs, the least-squares
error underestimates the total variability of the targeted velocity
variations by a factor of around six for most values of SNR and for
all applied stretching coefficients (Fig. 11). We address the cause of
this discrepancy in Appendix B.

Finally, we plot etotal against SNR (Fig. 12) to see if the estimates
we obtain during our tests exhibit the inverse relationship between
cross-correlation quality and δt/t error that we see for real data
(Figs 4 and 5). When viewed on a log–log scale, these results exhibit
a clear anticorrelation. Reassuringly, the similarity between this plot
and Figs 4 and 5 demonstrates the consistency between the SNR we
simulate and the SNR we measure from real data.

6 D I S C U S S I O N A N D C O N C LU S I O N S

To assess the accuracy of the velocity variations measured from
noise cc with the MWCS technique we constructed a set of syn-
thetic cc functions corresponding to known media velocity varia-
tions (stretching coefficients) and perturbed by random noise with
statistical properties similar to those observed at the stations of
the Piton de la Fournaise seismic network. Our analysis resulted
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Figure 10. Total errors calculated for each pair using eq. (7). Cross-correlation functions are taken from (a) stations DSR–TCR and (b) stations BOR–SFR.
Cold colours indicate (S, SNR) values for which δt/t is well resolved using the MWCS technique.

Figure 11. Ratio between the total error and the error estimated from the MWCS least-squares fit as a function of SNR. Cross-correlation functions are taken
from (a) stations DSR–TCR and (b) stations BOR–SFR. One line is plotted for each simulated stretch (see legend).

Figure 12. Total error plotted as a function of SNR. Cross-correlation functions are taken from (a) stations DSR–TCR and (b) stations BOR–SFR. One line is
plotted for each simulated stretch (see legend in Fig. 11) along with its estimated slope (dashed lines).
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MWCS: assessment of resolution and accuracy 877

in simple relations between the accuracy of the recovered velocity
variations and the SNR of the analysed cc functions (Fig. 10). In
turn the SNR is on average simply related to the duration of the
noise record from which the cc function was computed (Fig. 3).
These results provide us with a simple guidance on how to choose
an optimal stack duration to recover a desired level of media veloc-
ity variations. In particular, for the case of the seismic stations on
Piton de Fournaise volcano, our analysis indicated that recovering
a relative velocity perturbation of 0.1 per cent from a single pair of
stations requires an SNR of ∼5 that can be obtained by stacking
a few tens of days of noise correlations. This implies in particular
that the accuracy of measurements presented by Brenguier et al.
(2008b) by averaging measurements from many station pairs could
be barely achieved from analysing a single pair of stations.

Another important result of our analysis performed with syn-
thetic cc functions is that the formal error computed from the linear
regression within the MWCS technique does not match the true
uncertainty of the recovered relative delay-times. In the case of our
tests, the true error appears to be around six times greater than that
which is estimated. This mismatch is mainly due to the fact that
the least-squares error is not uniquely defined, but depends on the
parameters used in the the application of the MWCS technique (See
Appendix B). For a particular choice of parameters, this error may
underestimate the real uncertainty of the recovered velocity varia-
tions. A further explanation is that the MWCS technique effectively
uses only one realization of the cc function with a relatively short
duration (because of the fast decay of the coda part of the recovered
Green’s functions). This single and short realization is not represen-
tative of the full variability of the cc functions. The sampling can
be improved by using multiple pairs of stations simultaneously as
has been done by Brenguier et al. (2008a,b). Nonetheless, the factor
relating the MWCS error with the total error is roughly independent
of both SNR and the media velocity variation. Furthermore, we ob-
serve the same factor (Fig. 11) for both pairs of stations considered
in our study, BOR–SFR and DSR–TCR. This means that, in the
case of Piton de la Fournaise seismic noise cross-correlations, and
for this particular choice of parameters, we can apply a correction
to the MWCS errors by simply multiplying their values by a factor
of ∼6.

A main conclusion from our study is that before systemati-
cally applying noise-based MWCS monitoring of temporal me-
dia changes in a particular setting, it is important to investigate
the statistical properties of the seismic noise and the convergence
of noise correlations. This analysis is necessary to establish the
correction factor for the MWCS errors and also the optimal du-
rations of correlated time-series. So far, our results indicate that
recovering relatively weak velocity changes associated with mod-
erate volcanic activity (Brenguier et al. 2008b), intermediate-size
earthquakes (Brenguier et al. 2008a) or with seasonal variations
(Meier et al. 2010) requires stacking correlations from a few tens of
days and averaging measurements from many pairs of stations. Fur-
ther improvement of temporal and spatial resolution of the MWCS
measurements could be eventually achieved by applying additional
steps in the data processing such as data adaptive filtering (Baig
et al. 2010).
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A P P E N D I X A : M W C S

In the following section, the method of Moving-Window Cross-
Spectral analysis (MWCS) is described in the context of stacked
reference and current cross-correlation functions.

A1 Time-delay computation

The first step in the MWCS analysis is the calculation of delay-times,
δt, between the two cross-correlation functions within a series of
overlapping lag-time windows.

Each cross-correlation function is divided into Nw windows, one
for each delay-time measurement. The choice of window length,
overlap and Nw will generally depend on the frequency content and
the SNR of the cross-correlation functions under consideration. The

windowed segments are mean-adjusted and cosine-tapered before
being Fourier-transformed into the spectral domain.

In Fig. A1 (a), an example of a windowed pair of cross-correlation
functions is shown. The cross-spectrum, X (ν), between the two
windowed time-series is calculated as follows

X (ν) = Fref (ν) · F∗
cur(ν), (A1)

where Fref (ν) and Fcur(ν) are Fourier-transformed representations
of the windowed time-series, ν is frequency in Hz and the asterisk
denotes complex conjugation. For our purposes, it is more useful to
represent the complex cross-spectrum by its amplitude |X (ν)| and
phase φ(ν)

X (ν) = |X (ν)| eiφ(ν). (A2)

One requirement of cross-spectral time-delay estimation is that,
aside from being shifted in time, the two windowed time-series are
similar. Such similarity is quantitatively assessed using the cross-
coherence C(ν) between their energy densities:

C(ν) =
∣∣X (ν)

∣∣
√

|Fref (ν)|2 · |Fcur(ν)|2
. (A3)

Here, the overlines indicate smoothing, which in our case is ob-
tained by applying a sliding raised-cosine function with a half-
width of 0.1 Hz to the energy density spectra of the two Fourier-
transformed time-series and to the real and imaginary parts of the
complex-valued cross-spectrum. The cross-coherence ranges be-
tween zero and one, with maximum values approached at those
frequencies where the two spectral densities are highly similar.

The time-delay between the two cross-correlations can be found
in the (unwrapped) phase, φ(ν), of the cross-spectrum, which will
be linearly proportional to frequency.

φ j = m · ν j , m = 2πδt. (A4)

The time shift, δti (subscript i for the ith window), between the
two signals is estimated from the slope m of a linear regression of

Figure A1. (a) A pair of a real reference (from Piton de la Fournaise) and a synthetic current cross-correlation, along the time interval between −30 and 30 s.
The current function is generated by stretching the reference by 0.1 per cent. The black rectangle delimits one of the windows used in the analysis (6s long,
sliding 3s). (b) The second step in the MWCS analysis: a linear regression through weighted least-squares over the time delays that have been computed during
the first step. Each time-delay is associated with the mean time in its sliding window. The straight red line is the fitted slope and the dotted lines highlight the
error margins.
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Figure A2. Example of how a delay-time is measured between two windowed cross-correlations. (a) Zoom-in of the two cross-correlations within a single
lag-time window (black rectangle in Fig. A1, panel a). (b) Coherency calculated for the two windowed signals at all frequencies. (c) Linear regression for the
phase displacement along the frequencies of interest (0.2 to 0.9 Hz), which have been marked with red asterisks and error bars (1/w2

j ).

the samples, j = l, . . . , h, within the frequency range of interest (see
Fig. A2, panel c). During the regression, a weight wj, which depends
on the cross-coherence at each sampled frequency, is assigned to
each cross-phase value.

w j =

√
C2

j

1 − C2
j

·
√

|X j | (A5)

Unlike Poupinet et al. (1984), these weights incorporate both the
cross-spectral amplitude and the cross-coherence. This generates
more differentiated weights in cases where the cross-coherence is
relatively constant but the cross-spectral energy is variable. Fig. A2,
panel (b) shows such an example. This choice of weighting is de-
scribed in more detail in Appendix C.

Using a weighted least-squares inversion, the slope m is estimated
as

m =
∑h

j=l w jν jφ j
∑h

j=l w jν
2
j

. (A6)

The associated error, em, is calculated using the rule of propaga-
tion of errors

em =

√√√√
∑

j

(
w jν j∑
i wiν

2
i

)2

σ 2
φ , (A7)

where σ 2
φ is the squared misfit of the data to the modelled slope and

is calculated as

σ 2
φ =

∑
j (φ j − mν j )2

N − 1
. (A8)

Following eq. (A4), the time delay, δt, and its error, eδt, between
the two signals are taken by simply dividing m and em, respectively,
by 2π .

Repeating this process for all windows, we obtain Nw delay-
time estimates between the two cross-correlation functions, each

corresponding to the central time, ti(i = 1, . . . , Nw), of the window
in which it was measured.

It is important to keep in mind that, for a given frequency range, eδt

is inversely proportional to the square-root of the number of values
that are used in the inversion. This means that if the windowed
cross-correlations are zero-padded prior to Fourier transformation,
the error estimate will be artificially reduced. Multiplying eδt by√

Nfft, where Nfft is the number of points in the Fourier-transformed
time-series, removes this dependence.

A2 Velocity variation results

To a first-order approximation, we can consider a stress field pertur-
bation which acts homogeneously over the region sampled by the
cross-correlated seismic noise. Under this assumption, the resulting
seismic velocity perturbation δv/v within that region will also be
homogeneous, and be manifest as a stretching −δt/t of the current
cross-correlation function relative to the reference function. This
stretching is constant over t, and is numerically the opposite of the
velocity perturbation (Poupinet et al. 1984).

δt
t

= − δv

v
(A9)

Consequently, to recover δv/v, we apply a linear regression to the
Nw delay-time measurements (Fig. A1).

δti = a + bti , i = 1 . . . Nw, (A10)

where the coefficient a represents a possible instrumental drift
(Stehly et al. 2007), and b corresponds to the relative time vari-
ation δt/t. Again, we can estimate these two parameters through a
weighted least-squares inversion. Here, the weights, pi, are deter-
mined using the estimated error of each time-delay measurement:
pi = 1/e2

δti. The resulting estimate for b = −δv/v is then

b =
∑

pi (ti − 〈t〉)δti∑
pi (ti − 〈t〉)2

(A11)
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with variance

e2
b = 1∑

pi (ti − 〈t〉)2
(A12)

while the intercept a is

a = 〈δt〉 − b〈t〉 (A13)

with variance

e2
a = 〈t2〉∑

pi (ti − 〈t〉)2
, (A14)

where 〈t〉=
∑

piti/
∑

pi, 〈δt〉=
∑

piδti/
∑

pi and 〈δt2〉=
∑

piδt2
i /

∑
pi

are weighted means of t, δt and t2, respectively.
An important feature of this formulation is that, for a given

correlation–time interval, the error of the relative velocity variation,
eb, is inversely proportional to the square-root of the number of
delay-times that are used in the regression. Consequently, if the
number of sliding windows Nw is increased by reducing the time-
step between consecutive windows, then the error will be artificially
reduced. This is similar to the dependence of each delay time error
eδt (eq. A7) on the number of points used in the Fourier transform
of the windowed data. Multiplying the estimated error by Nw is one
way to remove this dependence.

A P P E N D I X B : D E P E N D E N C E O F
E R RO R S O N M W C S PA R A M E T E R S

In Section 5, we observe a discrepancy (Fig. 11) between the total
errors we obtain from the distribution of each set of 1000 stretch
estimates (etotal, eq. 7) and the estimated least-squares error defined
by eq. (A12). One explanation for this is the dependence of the
estimated error on the number of sliding windows, Nw , into which
our cross-correlations are divided (see Section A2 in Appendix A).
In turn, this value is affected by the delay time errors, eδt (eq. A7
in Section A1 in Appendix), which themselves are dependent on
the number of points, Nfft, used to transform the windowed cross-
correlations into the Fourier domain.

We observe the behaviour of the total error and the estimated
error as these two parameters are varied. To this end, we alter Nw

by adjusting the time-step between consecutive 6-s wide windows,
and Nfft by zero-padding the windowed cross-correlations prior to
Fourier transformation. Fig. B1 shows the total error (Fig. B1a) and

the average least-squares error (expressed relative to δt/t, Fig. B1b)
we obtain when a stretch of 0.05 per cent and a signal-to-noise ratio
of 5 are simulated for station pair BOR–SFR. Each point corre-
sponds to 1000 trials for a given choice of Nw and Nfft. These plots
demonstrate the inverse proportionality between the estimated error
and the square-root of both Nw and Nfft. Interestingly, the total error
also appears to increase slightly with the time-step, suggesting that
a choice of broadly overlapping windows improves the precision of
the relative traveltime measurements that are obtained. However, the
associated error estimates must be calibrated to accurately evaluate
the true precision of these measurements.

A P P E N D I X C : T E S T O N T H E W E I G H T S

In Section A1 we introduce weights wj (eq. A5) to be associated
to each φj when estimating time shifts between cross-correlation
functions. In this section, we test the influence of these weights on
the results. To search for the most suitable formulation of wj, we
compare the accuracy of the yielded estimates for three different
weight definitions

w j =






C2
j

1−C2
j

(1)

C2
j

1−C2
j

√
|X j | (2)

√
C2

j

1−C2
j

√
|X j |. (3)

Using these weights, we apply the MWCS analysis to a reference
and a synthetic current function which has been perturbed from the
reference by stretching it to 0.1 per cent. Starting from this noise-
less current function, we add noise (as described in Section 4.2)
to reach final signal-to-noise ratios of 10, 5, 2 and 1. The resulting
estimates are shown in Fig. C1 (a and b, respectively) for the relative
error on time delay computations, and for the relative velocity vari-
ation recovered (named stretch). These measurements are in close
agreement with one another, revealing only a slight dependence on
the weights that are used. We choose to use wj(3) as it produces
differentiated weights in cases of near constant coherence, and per-
forms slightly better than the other schemes in these tests. Further-
more, these findings stress the importance of the noise level on the

Figure B1. The dependence of δt/t errors on Nfft and Nw . Total errors (a, eq. 7) and average least-squares errors (b, eq. A12) are plotted as a function of the
time-step between 6-s wide sliding windows. One curve is plotted for each value of Nfft (see legend). Cross-correlation functions are taken from station pair
BOR–SFR. In all cases, the MWCS technique is applied 1000 times to cross-correlations that have been stretched by 0.05 per cent and have a simulated signal
to noise ratio of 5.
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Figure C1. (a) Relative error of time delay estimations versus SNR for different weights. Each symbol corresponds to one of the three definitions of wj. (b)
Final results of the MWCS analysis in varying the weights and the SNR level. The symbols match those in panel (a), the black horizontal line shows the real
value of stretching between the two ccs.

resolution of the MWCS technique as the errors shown in Fig. C1
are strongly dependent on SNR values.

A P P E N D I X D : D I S T R I B U T I O N O F
O B S E RV E D F LU C T UAT I O N S

In Section 4.2 we simulate noisy cross-correlation functions by
contaminating them with a random time-series whose squared am-
plitude spectrum mimics that of the fluctuations we observe in real
data. This time-series is drawn from a Gaussian distribution with
random phase. In this section, we determine whether such a se-
ries is representative of the fluctuations that exist in real cross-
correlations.

As described in Section 4.1, we observe the real fluctuations in our
cross-correlations by taking the difference between corresponding
current and reference functions. The cross-correlations we use in
the following examples are from station pair BOR–SFR on Piton de
la Fournaise volcano, and were measured during the period between
1999 and 2006.

We first analyse the distribution of these fluctuations in the
time-domain (Fig. D1, left-hand side), then consider their phase
distribution (Fig. D1, right-hand side) after transforming them
into the Fourier domain. In both cases, we plot a histogram (top
panel) and a quantile–quantile plot (bottom panel) to check for a
Gaussian distribution. In this example, the time-domain distribu-
tion at 30 s lag-time, and the phase distribution at 0.65 Hz are

Figure D1. Distribution of the time-domain amplitude (left-hand side) and unwrapped phase (right-hand side) of the fluctuations in the current functions
measured at stations BOR and SFR. A histogram (top panel) and a quantile–quantile plot (bottom panel) is shown in each case. The plotted values are coloured
by the number of eruption days contained in each 30-day current stack. Colours range from blue (no eruption days) to red (30 eruption days ).
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shown. The quantile–quantile plots are made by applying the in-
verse normal distribution function (with zero mean and unit stan-
dard deviation) to each ranked set of measurements. The resulting
series are plotted (vertical axis) against the ordered measurements
(horizontal axis). As a reference, a line is plotted through the quar-
tiles of the two series. If the plotted distribution is Gaussian, then
the quantile–quantile plot should trace a straight line. Deviations
from the straight line are interpreted as deviations from a Gaussian
distribution.

Our tests show that the fluctuations we observe in real cross-
correlations deviate slightly from a simple Gaussian distribution

with random phase, mostly during eruptions. Therefore, the analy-
sis we present in this paper relies on the fluctuations being Gaussian.
One way to improve this analysis for coeruptive periods would be
to characterize the true noise distribution and randomly draw from
it when simulating noisy cross-correlations. Nonetheless, the sim-
ilarity between the measurement errors we observe when applying
the MWCS technique to real data (Figs 4 and 5) and those we ob-
tain in our simulated tests (Fig. 12) suggests that the methods we
use to create synthetic noise and evaluate the level of fluctuation
in real cross-correlations are adequate for the purposes of these
tests.
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