Quantification of iron redox ratios in silicate glasses and melts by Raman spectroscopy

<u>B. Cochain^{1,2}</u>, D. R. Neuville¹, V. Magnien^{1,2}, G. S. Henderson⁴, and P. Richet¹

¹Physique des Minéraux et des Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris Cedex 05, France E-mail : cochain@ipgp.jussieu.fr ²SCDV-LEBV, CEA Valrhô, Centre de Marcoule, 30207 Bagnols-sur-cèze, France ³Laboratoire Structure et Propriété de l'Etat Solide, Université de Lille 1, 59655 Villeneuve d'Ascq, France ⁴ Dept of Geology, University of Toronto, Toronto, Canada

Determination of iron redox equilibrium

Geological interest Iron, most abundant transition element

Determination of iron redox equilibrium

Industrial interest :

- glass production
- nuclear waste storage glass

Determination of iron redox

Lack of in situ data Knowledge on iron redox kinetics

=>XANES spectroscopy (limited access)

Raman spectroscopy

- Calibration to quantify iron redox ratios
- In situ experiments possible
- Ready access

Compositions investigated

	SiO2	AI203	B2O3	Fe203	FeO	CaO	MgO	Na20	Li20
Pyroxenes based									
Pyrox	53.17				12.71	19.85	14.27		
PyrNa	52.53				12.56	17.16	12.33	5.42	
PyrLi	54.04				12.92	17.65	12.69		2.69
Borosilicates									
NB67.18Fe1	64.78		20.44		1.16			13.63	
NB67.18Fe5	61.78		19.49		5.74			12.99	
NB67.18Fe10	58.07		18.32		11.39			12.22	
Alumino-borosilicate									
FAMA	46.5	10,00	18.5	5,00				20,00	

Synthesis under different oxygen fugacities

≠ redox ratios

- Iron redox ratios :
 - Wet chemical analysis
 - Mössbauer spectroscopy
 - Electron Microprobe analysis

Experimental conditions

Effect of focus on Raman spectra

Need to focus on the surface of the glass

Raman spectra analysis

Raman spectra correction and normalization

Raman spectra

Long correction (1977) $I = I_{obs} \times R$

Avec R = $f(v_0, v, et T)$

Evolution of Raman spectra with mol% Feo

With increasing FeO content :

- Apparition and increase of a band at 980cm⁻¹ in borosilicates
- Shift to lower frequency of the 980 cm ⁻¹ band => ^[4]Fe³⁺-O bonds shared with Si

Evolution of Raman spectra with iron redox ratio borosilicates : NB67.18Fe5

With increasing Fe³⁺content:

- Evolution of the 980 cm⁻¹ band
- Clear changes in Raman spectra for a given composition

PyrNa

With increasing Fe³⁺ content:

- Evolution of the 915 cm⁻¹ band in based pyroxenes
- Clear changes in Raman spectra for a given composition

Validity of the method : band assignement

Distinct bands appear for Ti and Fe :

- around 885 cm⁻¹ for NS₂Ti₁₀ => attributed to Ti (Mysen & Neuville, 1995, Reynard & Webb, 1998)

=> Ti in five fold coordination according with XANES

and Raman (Henderson & Fleet, 1995, Farges et al 1996, Reynard & Webb, 1998)

- around 920 cm⁻¹ for NS₂^[4]Fe³⁺₁₀ (Mysen et al., 1985; Magnien et al., 2006)

Deconvolution of Raman spectra Mysen et al. (1982) :

Intensity, position, width : unconstrainded and independent parameters

Alumino-boro-silicate : FAMA

Proportions of diverse structural entities: Area ratio of individuel bands (Mysen et al., 1892; Mysen et al., 1984)

Evolution of Raman spectra with iron redox ratio borosilicates : NB67.18Fe5

Proportions of diverse structural entities : Area ratio of individual bands (Mysen et al., 1892; Mysen et al., 1984)

Calibration :

for each composition => need to know two redox ratios (ideally the most reduced and most oxidized) and after we can determine intermediate redox states

=> follow all other redox, and especially redox variation in T

Application : In situ determination of Iron redox ratio

Conclusion

• Clear changes in Raman spectra visible with the evolution of iron redox ratio for a given composition

 Gaussian band around 950 cm⁻¹ assigned to the vibration of ^[4]Fe³⁺-O bonds, and not to T-O bonds (T= ^[4]Ti, ^[5]Ti or all other network formers)

• Empirical calibration between the area ratio of the bands in the Raman spectra and wet chemical analysis

• In situ determination of iron redox ratio

Thank you for your attention