Structure and properties of glasses and melts in the MgO-Al₂O₃-SiO₂, CaO-Al₂O₃-SiO₂, MgO-CaO-Al₂O₃-SiO₂ systems

Daniel R. Neuville

Cormier L.², de Ligny D.³, Flank A-M.⁴, Henderson G.S.⁵, Lagarde P.⁴, Massiot D.⁶, Millot F.⁶, Montouillout V.⁶, Rifflet J.C.⁶, Richet P.¹, Roux J.¹

¹ Physique des Minéraux et des Magmas, IPGP-CNRS, 4 place Jussieu, 75252 Paris
 ²IMPMC, Universités PARIS 6 et 7, CNRS, 4 place Jussieu, 75252 Paris
 ³LPCML, Université Lyon 1, CNRS UMR 5620, 12 rue Ampère, 69622 Villeurbanne
 ⁴ SOLEIL L'Orme des Merisiers, BP48, 91192 Gif s/Yvette, France.
 ⁵Dept of Geology, University of Toronto, 22 Russell St, Toronto, Canada
 ⁶ CRMHT-CNRS, 1D av. Recherche Scientifique, 45071 Orléans cedex 2,

1) MAS System

3) CMAS System

2) CAS System

SiO₂

· Co

Sa

· AE

Sp

Foe

200

MgO

905 905 Richet et al.

 AI_2O_3

• Mu

R=MgO/Al₂O₃

MV of glass increases linearly with SiO₂ and decreases with MgO

MAS

 $C_p^{\text{conf}} = C_p^{-1} - C_{pg}(T_g)$ $Tg \Longrightarrow \log \eta = 13 \log Po$

Configurational heat capacity increases with decreasing SiO_2 and increasing Al_2O_3 content.

After Richet (1987) and Richet and Bottinga (1984)

Viscosity MAS

Viscosity increases strongly with SiO₂

Tg increases strongly with SiO_2 and very small variation between 50 and 70 mole % of SiO_2

Raman spectroscopy MAS

Mg - **Conclusions**

MAS

• MV increases and C_{p}^{conf} decreases with SiO₂

• Viscosity and Tg increase with SiO₂ and Al₂O₃

• Viscosity and Raman spectroscopy for R=1 glasses => random substitution Si/Al, few structural changes

• NMR \Rightarrow VAl increases with Al₂O₃

CAS

MV of glass increases with SiO₂ and decreases with CaO

 $C_p^{\text{conf}} = C_p^{-1} - C_{pg}(T_g)$ $Tg \Longrightarrow \log \eta = 13 \log Po$

Configurational heat capacity increases with decreasing SiO₂ and increasing Al₂O₃ content.

> After Richet (1987) and Richet and Bottinga (1984)

Glass transition temperature

CAS

 $R = CaO/Al_2O_3$

Substitution of Si by Al in Q⁴ species along the join R=1

 $SiO_2 => Tetrahedra SiO_4$ $CaAl_2O_4 => Tetrahedra AlO_4$ substitution of 1 Si by 1 Al and Ca charge compensator

Anomaly?

CAS

RMN 750MHz, CRMHT, Orléans, ²⁷Al 1D MAS

Neuville et al. GCA, 2004, 68, 5071

\Rightarrow 1<R<3 92%Al^{IV} and 8%Al^V in glasses with classic (15°/s) and rapid quench (300°/s)

Neuville et al. JNCS, 2007

 δ_{iso} ^[4]Al independant of MO/Al₂O₃ and vary linearly with SiO₂

Neuville et al. Chem Geol., 2006, 229, 173

Anorthite

CaAl₂Si₂O₈

Crystal and melt 1000K => Al in 4 fold coordination

with increasing temperature few AI in 5 fold coordination appear according with NMR (Coté, 1993) and Raman spectroscopy (Daniel et al, 1995)

Al K-edge

 $CA = CaAl_2O_4$

Crystal and melt => Al in 4 fold coordination

with increasing temperature few AI in 5 fold coordination appear according with NMR (Couture et al, 1990)

Ca-Conclusions

Explanations for the increase of Tg at low SiO₂ content

•Glasses R=1: Q^4

- few structural change substitution Si/Al
- \Rightarrow polymerization not change
- \Rightarrow no Tg maximun
- \Rightarrow ^[5]Al explain the Tg deviation

•High content in CaO : Al in Q² low Tg

With increase of SiO₂ or Al₂O₃ : Q⁴
Al enters preferentialy in Q⁴ species
⇒ the connectivity of the network is increases => higher viscosity
⇒ high Tg

•Not need O tricluster to explain viscosity variation

1) MAS System

3) CMAS System

2) CAS System

Ca/Mg-Conclusions

•No significant changes in Raman spectroscopy

• viscosity measurements show a minimum at Tg which can be explain by an ideal mixing term in the configurational entropy

• the proportion of ^[5]Al increases with Al₂O₃

Conclusions

•R=1 : substitution of Si by Al in Q⁴ species see by Raman, NMR are in good agreement with viscosity and configurational entropy

- per-MO glasses: low amount of ^[5]Al and for the CAS system, Al in Q² species for low SiO₂ content.
- peraluminous glasses: ^[5]Al increases with Al₂O₃
- Tg increases with ^[5]Al => ^[5]Al can be a network former

• **Ca/Mg** mixing => ^[5]Al increases with Mg and viscosity can be predict using an ideal mixing term

• No tricluster oxygen to explain properties variation in MAS, CAS, CMAS and probably also in NAS