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Epidemic type aftershock sequence exponential
productivity
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Studying the hierarchical structure of the aftershock sequence of the three largest
earthquakes of the last decade, we show that the number of offspring events counted
in a fixed magnitude band with respect to the magnitude of the parent events follows
an exponential distribution. Such an exponential productivity law is coherent with
the exponential decays inferred from largest earthquakes worldwide. Epidemic Type
Aftershock Sequences (ETAS) are the most popular stochastic models of seismicity
and they are all based on a Poisson distribution of the earthquake productivity with
a pronounced non-zero mode. We construct here an alternative model incorporating
an exponential productivity law. For the three aftershock sequences. we estimate
parameters of both models using aftershocks occuring during the first 2 days. We
simulate a set of synthetic earthquake catalogues for both models and compare the
average cumulated number of events with respect to time. In all cases, the ETAS
model overestimates the number of events in the interval from 2 to 365 days. For the
same time period, the exponential ETAS model gives a satisfactory cumulative number
of events. We conclude that exponential distribution of the earthquake productivity
seems to be an important property of the seismic relaxation process. KEYWORDS:
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Introduction

An important feature of seismicity is the oc-
currence of space-time clusters demonstrating that
earthquakes interact with each other. Focusing on
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the way in which a sequence of earthquakes de-
velops over space and time, we may consider ev-
ery event as the trigger for the perturbation of the
state of stress in some area around the event. The
zones of such a perturbation intersect in time and
space, [Gvishiani et al., 2013a; 2013b; 2016], and
each new event may be considered as an “offspring”
of all preceding earthquakes. For a Poisson pro-
cess such epidemic behavior may be described as
a superposition of the processes, initiated by every
event. Since the advent of epidemic models of seis-
micity, the productivity has become a major issue
because it determines the increase in seismicity rate
after each earthquake [Helmstetter, 2002; Kagan,
1981; Ogata, 1989]. In these models the number
of events triggered by a magnitude 𝑚 earthquake
is considered to vary as a Poisson process of rate
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⟨𝑁(𝑚)⟩ = 𝐾10𝛼𝑚. The value 𝛼 was estimated in
a range from 0.5 to 2 [Console et al., 2003; Hainzl
and Marsan, 2008; Hainzl et al., 2013; Wang et
al., 2010; Werner and Sornette, 2008; Zhuang et
al., 2004; Zhuang et al., 2005]. This value is usu-
ally close to the observed 𝑏-value, the slope of the
earthquake-size distribution [Helmstetter, 2003].
However, these estimates remain uncertain due

to the difficulty of isolating the relative contri-
butions of successive events in a sequence. This
task remains in early stage despite the diversity of
declustering methods implemented in the past.
Two stochastic approaches have been suggested

to find causal links within cascades of triggered
seismicity. A first approach is to separate the
branching structure of earthquake sequences from
the background rate using an iterative algorithm
based on maximum likelihood estimation of the pa-
rameters of an epidemic model of seismicity ETAS
[Zhuang et al. 2002]. A second approach is model
independent.
A linear contributions of each earthquake to the

overall seismicity rate is assumed [Marsan and Helm-
stetter. 2008]. Those two approaches suppose that
every new earthquakes is an “aftershock” of all pre-
ceding events, and the goal is to estimate the im-
pact of each preceding event on each subsequent
event in terms of probability. An alternative ap-
proach [Zaliapin and Ben-Zion, 2013; Zaliapin et
al., 2008] goes directly to consider a tree of events
in which each event may be a “parent” of sev-
eral later events, but it can be an “offspring” of
only one earlier event. Technically the “parent”
is found as a “nearest neighbor” using proximity
functions in time-space-magnitude domains [Baiesi
and Paczuski, 2004; Zaliapin et al., 2008]. Here
we shall call “parent” events triggering events, and
their “offsprings” triggered events.
All these methods confirm the dependency of the

productivity on the magnitude of the triggering
event. However, it was found that within this de-
pendency there is a huge variability in the number
of triggering events in the seismic catalogs [Marsan
and Helmstetter, 2017]. Recently it was found that
unexpectedly this variability may be described by
exponential distribution [Shebalin et al. 2018] with
maximum at 0. This result was obtained for the
global statistics of the number of aftershocks from
earthquakes of magnitude 6.5 and above. After-
shocks of magnitude above a threshold, defined as

the magnitude of the main shock minus 2, were
counted.
Here we study a distribution of the productiv-

ity in a tree of aftershocks for three largest earth-
quakes of the last decade: 11 March 2011, Mw=9.1,
Tohoku earthquake; 27 February 2010, Mw=8.8,
Chile earthquake; 11 April 2012, Mw=8.6, Suma-
tra earthquake. We find that for each sequence the
distribution of the productivity also tends to an
exponential form. Thus, exponential distribution
of earthquake productivity seems to be a general
property of seismicity. Exponential distribution of
the real number of triggered events contradicts to
usually expected form of Poisson distribution. To
better understand this issue we compare two mod-
els for the three aftershock sequences.

Earthquake Productivity

We define earthquake productivity using “delta-
analysis” [Zaliapin and Ben-Zion, 2013; Zaliapin
et al., 2008], in a magnitude band of a given width
Δ𝑀 relative to the magnitude of each triggering
event. Thus, the productivity is a property of each
earthquake.

Tree of Clustered Earthquakes

To count the productivity values we decompose
the earthquake catalogue into a hierarchical tree
of pairwise links triggering-triggered events. For
each pair of earthquakes {𝑖, 𝑗}, we compute the
proximity function[Baiesi and Paczuski, 2004],

𝜂𝑖𝑗 =

{︃
𝑡𝑖𝑗(𝑟𝑖𝑗)

𝑑f10−𝑏𝑚𝑖 for 𝑡𝑖𝑗 > 0,

+∞ for 𝑡𝑖𝑗 ≤ 0.
(1)

where 𝑡𝑖𝑗 = 𝑡𝑗 − 𝑡𝑖 is the inter-event time, 𝑟𝑖𝑗
the spatial distance between the epicenters, 𝑚𝑖 the
magnitude of event 𝑖, 𝑑f the fractal dimension of
the epicenter distribution and 𝑏 the slope of the
earthquake-size distribution.
Using the proximity function (1) for each event

we find the preceding nearest-neighbor. In case
the 𝜂 value exceeds a threshold 𝜂0, the event is
considered as a background event because it has
no triggering event. For each sequence we com-
puted 𝜂0 using the original technique of [Zaliapin
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and Ben-Zion, 2013; Zaliapin et al., 2008], approxi-
mating the distribution of the nearest-neighbor val-
ues 𝑙𝑜𝑔(𝜂) by a mixture model of two Gaussian dis-
tributions, one modeling independent events, the
other causally-related events. We select the 𝜂0-
value for which the two types of errors compensate
each other: same probability of having causally-
related events with 𝜂 > 𝜂0 and independent events
with 𝜂 < 𝜂0.
Accordingly, all clusters are built from a pri-

mary triggering event. There is a single path from
any earthquake in a cluster to the corresponding
primary event. Primary events by definition are
“background events”. Background events with the
largest magnitude in the cluster are mainshocks.
But a triggered event may have a larger magni-
tude than its triggering events. In this case the
main shock is not a primary event and nor back-
ground event. Those definitions describe an af-
tershock sequence as a hierarchical tree of events.
This is slightly different from a standard definition
of the foreshocks – main shock – aftershock series
in which the majority of the aftershocks (and also
foreshocks) are linked directly to the main shock.
In order to avoid the excessive influence of the def-
inition of the proximity function on our analysis,
for each of the three series we consider not a single
hierarchical tree of events, including the mentioned
earthquakes, but all earthquakes in a simple spa-
tial region with a form of stadium [Baranov and
Shebalin, 2017] in a time interval of 365 days after
the earthquake.
For each triggering event, we count the num-

ber 𝑁 of triggered events at the lower hierarchical
level using a relative magnitude threshold Δ𝑀 (i.e.
𝑀triggering −𝑀triggered < Δ𝑀). This number 𝑁 is
defined as the productivity.

Distribution of the Productivity

The distribution of the number of triggered events
for an earthquake population is defined as the pro-
ductivity distribution with a mean denoted Λ0(Δ𝑀),
we call the clustering factor. The productivity may
vary from place to place, and also from sequence
to sequence. Recently it was found [Shebalin et
al. 2018] that in a global scale the productivity
has a distribution of the exponential shape with
maximum at 0. It was also shown that this shape
does not depend on the magnitude of the trigger-

ing earthquakes nor on the width of the considered
magnitude band. For the exponential distribution
the clustering factor is an important parameter, as
it is a single parameter of this distribution.
Here we concentrate on the productivity distri-

bution within aftershock sequences of large earth-
quakes. It is important to know whether the expo-
nential form is also characteristic in much more ho-
mogeneous conditions in comparison to the global
variability of the aftershock sequences considered
earlier [Shebalin et al. 2018].
The estimated completeness magnitude for the

Sumatra and Chile sequences is 4.5, for Tohoku
5.0. For the analysis we use the value Δ𝑀 = 1.5.
This choice allowed to choose the minimum mag-
nitude of triggering earthquakes 𝑀𝑡𝑟 6.0 for the
Sumatra and Chile sequences and 6.5 for the To-
hoku sequence. Figure 1 shows the histograms of
the productivity in comparison to exponential and
Poisson distribution. We note that exponential dis-
tribution is the distribution of a real value, and the
actual productivity is an integer. We may interpret
this challenge by supposing that the productivity is
an internal property of each earthquake, similar to
its magnitude. Specific realizations of the produc-
tivity is an integer. It is natural to suppose that
the specific values have Poisson distribution with a
rate equal to the “internal” productivity. The ex-
isting epidemic models of seismicity imply that the
internal productivity is constant. The difference
between the “internal” and the real productivity
may explain some distortion of the exponential dis-
tribution. However it is clear from the figure that
for all the three sequences exponential distribution
is preferable in comparison to Poisson distribution.

Two Alternative Epidemic Models of
Seimicity

We test here whether the found property is im-
portant for modeling the seismicity. We compare
two epidemic models, the classic ETAS model and
a similar model in which the constant internal pro-
ductivity is replaced by a random internal produc-
tivity with exponential distribution. Using an in-
terval of 2 days right after the large earthquakes.
Using those estimates we construct two versions

of a synthetic catalog. Repeating simulations many
times, we calculate an average cumulative number
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Figure 1. Earthquake productivity for three aftershock sequences. (a) – 27 February
2010, Mw=8.8, Chile earthquake, (b) – 11 March 2011, Mw=9.1, Tohoku earthquake,
(c) – 11 April 2012, Mw=8.6, Sumatra earthquake. Dots show the number of triggered
events for 𝑀 ≥ 6.5 (Tohoku) and 𝑀 ≥ 6.0 (Chile and Sumatra) triggering events using
a relative magnitude threshold Δ𝑀 = 1.5. The solid line is the exponential law with
parameter Λ0, the clustering factor. The histogram shows the Poisson distribution with
parameter Λ0.

of events as a function of time in the interval 0 to
365 days.
Finally we compare the results for the two mod-

els with the real data.

ETAS Model

The classic ETAS model [Kagan and Knopoff,
1981; Ogata, 1989] considers seismicity as a non-
stationary Poisson process with a rate described
by the equation (2).

𝜆𝐸𝑇𝐴𝑆(𝑡) = 𝜇+𝐾0

∑︁
𝑡𝑖<𝑡

10𝛼(𝑀𝑖−𝑀0)

(𝑡− 𝑡𝑖 + 𝑐)𝑝
, (2)

where 𝑡𝑖 and 𝑀𝑖 are the time and the magnitude of
the 𝑖-th earthquake, 𝜇, 𝐾0, 𝛼, and 𝑝 are parame-
ters, 𝑀0 magnitude threshold for counting events.
Parameters and 𝑝 describe temporal decay of the
triggered events according to the empirical Omori-
Utsu law [Utsu, 1965; Utsu, 1970]. Parameter 𝛼,
as discussed above, is usually close to the 𝑏-value
of the Gutenberg-Richter relation. Parameter 𝜇 is
the background seismicity rate, which is assumed
constant.

To estimate parameters of the model we use a
standard maximum likelihood procedure [Ogata,
1989]. Earthquake catalogs are not complete right
after large earthquakes. To minimize the impact of
this effect we omit in the analysis the interval upto
0.05 days after the earthquake.

For the synthetic catalog simulations there are
two equivalent ways [Zhuang et al., 2004]. The
first is to treat the ETAS model as a single point
process, with the probability of an event at each
point in time reflected in the conditional intensity
which contains a component of background and a
component of triggered seismicity contributed by
all past events in the history of the process. The
second way is to simulate the background events
as a Poisson process, and then recursively simu-
late the aftershocks resulting from each of these
background events in turn. Finally, all events are
combined and put into the correct temporal order
of occurrence. The first way is not appropriate for
our modification of the ETAS model, because the
internal productivity is random. For this reason we
apply here the second way. In both methods the
magnitude of events is simulated independently as
a random number above 𝑀0 with distribution de-
fined by Gutenberg-Richter relation.
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Table 1. ETAS and EP models parameters estimated using data for 2 days after mainshock

Mainshock 𝑏-value Model parameters
Chili, 2010, M8.8 𝑏 = 1.36 ETAS: 𝜇 = 0.65, 𝑐 = 0.08, 𝑝 = 1.26, 𝐾0 = 0.028, 𝛼 = 1.82

EP: Δ𝑀 = 1.5, 𝜇𝐸𝑃 = 0.1, Λ = 0.2, 𝑐 = 0.034, 𝑝 = 1.01
Tohoku, 2011, M9.1 𝑏 = 1.06 ETAS: 𝜇 = 0.81, 𝑐 = 0.17, 𝑝 = 1.56, 𝐾0 = 0.04, 𝛼 = 1.74

EP: Δ𝑀 = 1.5, 𝜇𝐸𝑃 = 0.2, Λ = 1, 𝑐 = 0.04, 𝑝 = 1.02
Sumatra, 2012, M8.6 𝑏 = 1.26 ETAS: 𝜇 = 0.43, 𝑐 = 0.1, 𝑝 = 1.52, 𝐾0 = 0.01, 𝛼 = 1.846

EP: Δ𝑀 = 1.5, 𝜇𝐸𝑃 = 0.1, Λ = 0.7, 𝑐 = 0.05, 𝑝 = 1.36

ETAS Model with Random Productivity
with Exponential Distribution

We suggest here a simple modification of the
ETAS model we shall call EP model. This model
modifies the recursive definition of the ETAS model
described above. The model represents seismicity
as a sum of Poisson processes with the decay ac-
cording to the Omori law, initiated by background
events. Each new event also initiates a similar de-
caying process. For the synthetic catalogue simu-
lations for each new event we randomly generate
its internal productivity Λ𝑖 according to the expo-
nential distribution

𝑝(Λ𝑖) =
1

Λ0
𝑒𝜆𝑖/Λ0 .

Then we simulate each branch of the non-statio-
nary process with the rate defined by the equation
(3):

𝜆𝐸𝑃𝑖(𝑡) =
Λ𝑖

(1 + (𝑡− 𝑡𝑖)/𝑐)𝑝
. (3)

In simulations we use Bayesian estimates of the
parameters 𝑐 and 𝑝 with Gaussian priors [Shebalin
and Baranov, 2019] in the interval (0.05,2) days
after the large earthquakes. The clustering factor
Λ0 is also estimated in this interval simply as the
average productivity.
This number is corrected to the interval of 365

days using a multiplier

𝑈 =
𝑈(0.05, 365)

𝑈(0.05, 2)
,

where 𝑈(𝑎, 𝑏) =
∫︀ 𝑏
𝑎 (1 + 𝑥/𝑐)−𝑝𝑑𝑥. Like in ETAS

model, magnitudes of events are independently as-
signed according to the Gutenberg-Richter rela-
tion. We use a Bayesian estimate of the 𝑏-value
with Gaussian priors [Shebalin and Baranov, 2019].

Data

We used data from ANSS ComCat earthquake
catalog provided by USGS. Aftershocks of M8.8
Chile earthquake of 2010 were taken for a year af-
ter the mainshock from the circle of radius 900 km
surrounding its epicenter. Aftershocks of M9.1 To-
hoku earthquake of 2011 were taken for a year af-
ter the mainshock from the circle of radius 1000
km surrounding its epicenter. Aftershocks of M8.6
Sumatra were taken for a year after the mainshock
from the circle of radius 700 km surrounding its
epicenter. We did not apply any other special af-
tershock selection procedure.

Results and Discussion

For each of the three sequences we have per-
formed 2500 simulations of the synthetic catalogs
using the two models. We estimated ETAS and
EP models parameters using data for 2 days after
the mainshocks (Table 1). The average cumulative
number of event has been calculated as a function
of time. Results are shown in Figure Figure 2.
We see that the ETAS model gives a drastic over-

estimation of the earthquake rates at later times,
while the EP model is quite acceptable in the whole
forecasting period from 2 to 365 days. Two major
reasons explain this as we can suppose. First, val-
ues following the exponential distribution are sta-
tistically smaller than values of the Poisson distri-
bution with the same mean value. Thus, the EP
model should predict smaller rates in comparison
to the ETAS model. Second, in all three cases the
background rate of the ETAS model estimated at
the beginning of the sequence is much higher than
estimated in the interval of 365 days. In the EP
model the calculations of the background rate give
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Figure 2. Cumulative number of seismic events for three aftershock sequence, real and
forecasted by models ETAS and EP. (a) – 27 February 2010, Mw=8.8, Chile earthquake,
(b) – 11 March 2011, Mw=9.1, Tohoku earthquake, (c) – 11 April 2012, Mw=8.6, Suma-
tra earthquake. Circles show the real cumulative number of event of magnitude 𝑀 ≥ 6.5
(Tohoku) and 𝑀 ≥ 6.0 (Chile and Sumatra), dashed line the average for 2500 catalogue
simulation of the ETAS model, solid line average for 2500 catalogue simulation of the
EP model. Parameters for both models have been estimated in the interval (0.05,2) days
afters the corresponding large eartquakes, their value are given in Table 1.
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similar values for the beginning and for the whole
sequence.
One of interesting results of this paper is expo-

nential form of the productivity distribution within
single aftershock sequences from large earthquakes.
Earlier this property was established in global and
regional scales [Shebalin et al. 2018; Shebalin and
Baranov, 2019].
The obtained results demonstrate advantages of

the suggested modification of the ETAS model. It
is too early to come to final conclusions about those
two model, however we obviously may conclude
that exponential shape of the productivity distri-
bution is an important property of the seismic pro-
cess.
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