
Setting the length and time scales of a cellular automaton dune model

from the analysis of superimposed bed forms

C. Narteau,1 D. Zhang,1 O. Rozier,2 and P. Claudin3

Received 1 August 2008; revised 30 April 2009; accepted 29 May 2009; published 28 July 2009.

[1] We present a new 3-D cellular automaton model for bed form dynamics in which
individual physical processes such as erosion, deposition, and transport are implemented
by nearest neighbor interactions and a time-dependent stochastic process. Simultaneously,
a lattice gas cellular automaton model is used to compute the flow and quantify the
bed shear stress on the topography. Local erosion rates are assumed to be proportional to
the shear stress in such a way that there is a complete feedback mechanism between
flow and bed form dynamics. In the numerical simulations of dune fields, we observe
the formation and the evolution of superimposed bed forms on barchan and
transverse dunes. Using the same model under different initial conditions, we perform
the linear stability analysis of a flat sand bed disturbed by a small sinusoidal
perturbation. Comparing the most unstable wavelength in the model with the
characteristic size of secondary bed forms in nature, we determine the length and time
scales of our cellular automaton model. Thus, we establish a link between discrete
and continuous approaches and open new perspectives for modeling and quantification
of complex patterns in dune fields.
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1. Introduction

[2] Sand dunes form magnificent large patterns whose
symmetries reflect those of the wind regime and whose
appearance also depends on the amount of sand available
for transport as well as the possible presence of vegetation
[McKee, 1979; Breed and Grow, 1979; Lancaster, 1995;
Bristow et al., 2000; Wiggs, 2001; Kocurek and Ewing,
2005; Ewing et al., 2006; Baas and Nield, 2007]. These
dune patterns present various length scales, from an ‘‘ele-
mentary’’ size, on the order of 20 m, perceivable as the
typical dimension of the smallest superimposed structures
[Elbelrhiti et al., 2005], to the largest features, which can
reach a kilometric scale (Figure 1). Because smaller struc-
tures propagate faster, dunes interact with each other,
leading to the emergence of complex patterns by amalgam-
ation or nucleation of secondary bed forms [Kocurek et al.,
1991; Elbelrhiti et al., 2005, 2008].
[3] Continuous dune models have recently been devel-

oped and are able to generate realistic dune shapes under
various conditions [Kroy et al., 2002a, 2002b; Andreotti et

al., 2002; Hersen, 2004; Durán and Herrmann, 2006;
Parteli and Herrmann, 2007]. They encode basic physical
mechanisms responsible for the formation and propagation
of dunes and, in addition to morphological features, they are
also able to predict how the characteristic wavelength for
the formation of dunes scales with physical properties of
granular materials and fluids [Claudin and Andreotti, 2006].
However, the precise way in which dunes interact, amal-
gamate or calve is not well reproduced by these models
[Hersen et al., 2004; Durán et al., 2005]. In particular, the
modeling of secondary bed forms induced by collisions,
which are probably important for size regulation in barchan
fields, is presently an open issue [Elbelrhiti et al., 2005,
2008]. A definite weakness in these models is the way the
recirculation bubbles on the lee side of dunes are taken into
account by means of an effective envelope; the complete
determination of the flow over a complex topography is
numerically too expensive. As a result, they cannot be run
accurately over long time periods to investigate the dynamics
of a significant portion of a dune field.
[4] Cellular automaton (CA) dune models are more

appropriate for this purpose [Nishimori and Ouchi, 1993;
Werner, 1995; Werner and Kocurek, 1997; Nishimori et al.,
1999; Momiji and Warren, 2000]. These discrete models
consist of 2-D regular rectangular lattices in which the local
height of sediment is measured as the accumulation of so-
called ‘‘sand slabs.’’ The surface topography evolves
through individual motion of these slabs according to a
set of transition rules. Thus, CA dune models can be run in a
very efficient way, and a large diversity of bed forms can
arise spontaneously from collective behaviors of interacting
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cells over time. However, as for all CA approaches [Wolfram,
1986; Chopard and Droz, 1998], these discrete numerical
simulations present two types of drawbacks. First, transition
rules do not correspond to real physical mechanisms which
would have an existence at microscopic length scales.
Therefore, these rules are pure phenomenological parame-
ters whose relevance is only controlled a posteriori by the
effects they induce on the model outputs. The second flaw is
due to the discrete structure of CA: nothing imposes what
the size of a sand slab must be. As a result, time and length
scales are arbitrary inputs of CA dune models. This problem
is particularly evident when, beyond the overall symmetry
of the dune pattern, one wishes to address scale related
issues such as coarsening (i.e., dune amalgamation).
[5] In this paper we present a new class of cellular

automaton model for sand dunes, which couples a modeling
of sand slabs in the spirit of traditional CA models and a
lattice gas description of the turbulent air flow [Frisch et al.,
1986; d’Humières et al., 1986]. Our model is powerful
enough to generate realistic large barchan or transverse
dunes with superimposed bed forms. As in nature, these

superimposed structures appear at regular and well-defined
intervals, and we can make use of this secondary bed forms
to set the length scale of our model. With such a length
scale, sand fluxes and shear velocity can be used to
determine the time scale of this cellular automaton ap-
proach. This model at hand, we are then ready to investigate
in a quantitative way the dynamics of dune fields, an issue
which is however beyond the scope of this paper.
[6] The rest of the paper is structured as follows. In order

to state the physical concepts on which the analysis of this
work is based, we start with a brief pedagogical review of
dune formation as a result of a linear instability. In section 3,
we describe the CA model and emphasize the differences
and improvements with respect to the previous works.
Nevertheless, most of the technical details of the numerical
procedures are gathered in the appendices. Then, we present
some distinctive dune patterns produced by the model
(section 4). In connection to the continuous approaches,
section 2 is devoted to the stability analysis of a flat sand
bed in order to determine the most unstable wavelength in
the model. Finally, we discuss the perspectives of this work,

Figure 1. Observations of superimposed dune patterns in nature for (a) megabarchans in Peru
(6�08047.3900S 80�50025.4700W), (b) transverse dunes in Namibia (26�6026.2100S 15�00023.9000W),
(c) barchan dunes in Morocco (27�32049.5200N 13�12040.1500W), (d) barchan dunes in Morocco
(21�36051.4500N 16�46009.8600W), and (e) isolated barchan in Peru (9�500.5800S 78�30039.8500W).
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namely, as mentioned above, the emergence and the evolu-
tion of complex patterns in dune fields.

2. Dunes as the Result of a Linear Instability:
A Brief Review

[7] As one of the main goal of this paper, the setting of
the length and time scales of a CA dune model, is deeply
linked to the analysis of dune formation as a linear insta-
bility, we devote a brief pedagogical section to the relevant
physical mechanisms involved in this problem. Such a
section is important because the community working on
aeolian dunes is composed of scientists with various back-
grounds, so that concepts and terminology can be rather
varied. In what follows, the term ‘‘instability’’ characterizes
the emergence and growth of a pattern in an initially
homogeneous system. Conversely, ‘‘stability’’ refers to the
ability of a system to stay in its homogeneous state, or to
return to it when perturbed.

2.1. Linear Stability Analysis

[8] The analysis of the time and length scales of insta-
bilities by means of linearized equations is a standard
approach in hydrodynamics and many other branches of
physics. By identifying stabilizing and destabilizing terms,
these analyses reveal the mechanisms that, starting from a
homogeneous system, spontaneously generate periodic pat-
terns. Examples of such instabilities are countless; the
formation of an undulation along a flat interface between
two fluids is a case in point.
[9] In a vast majority of cases, the primary pattern

emerges with a well defined wavelength l. At the early
stage of this instability (the linear regime) l stays constant
with time t, whereas the amplitude z of the pattern (the
amplitude of the interface undulations in the above exam-
ple) grows exponentially z(t) / exp(st). In this expression,
s is the growth rate with units of frequency. In order to
analyze such an instability and to understand why a partic-
ular wavelength is emerging, it is necessary to estimate the
so-called dispersion relation s(k), which gives the growth
rate value of a sinusoidal perturbation as a function of the
wave number k = 2p/l. A positive s value corresponds to a
perturbation that grows (unstable situation), whereas decay-
ing (stable) perturbations have s < 0. As an initial flat
interface actually contains, in the form of an infinitesimal
‘‘noise,’’ all possible wave numbers, the dominant wave-
length of an emerging pattern corresponds to the most
unstable mode, i.e., to the largest positive s value. We call
this selected length scale lmax. The corresponding time
scale is then 1/smax. Beyond this initial stage, the pattern
usually exhibits coarsening of the wavelength and saturation
of the amplitude that are not accounted for by this linear
analysis. Indeed, numerical models have to come into play
to explore complex dune interactions.
[10] In nature and in laboratory experiments, it is usually

possible to measure the values of lmax and smax under
various conditions. As the linear analysis of the governing
equations permit the expression of these quantities as
functions of the different parameters of the system, a direct
test of understanding of the instability is to investigate
whether or not they scale as predicted with these parameters.

2.2. Dune Instability Mechanism

[11] In the context of sediment transport, linear stability
analyses were performed several decades ago for the for-
mation of ripples and dunes on the bed of sandy rivers
[Kennedy, 1963; Reynolds, 1965; Engelund, 1970; Fredsøe,
1974; Richards, 1980; Engelund and Fredsøe, 1982]. These
works have demonstrated that a key ingredient to under-
stand how a flat sand bed can destabilize is the shift
between the flux of sediment q(x) and the topography
z(x), where x is the along-stream coordinate. Around a
positive and smooth topographic feature such as a bump
or a dune, the location of the maximum of q separates an
upstream erosion zone from a downstream deposition zone.
Then, a perturbation of the bed can grow if the crest is in the
deposition zone. Therefore, all mechanisms that make the
flux phase advanced have a destabilizing action, whereas
those by which q responds with a lag are stabilizing.
[12] Determination of the maximum flux of sediment can

be decomposed into two independent components. As the
driving force that makes the sediment of the bed move is the
basal shear stress, a first contribution is of pure aerodynam-
ical nature: what is the shear stress imposed by the flow on
the bed? The second one is a transport issue: how does the
flux adjust to an imposed shear stress?
[13] In order to study wind profiles over low hills,

Jackson and Hunt [1975] and followers have developed a
linear description of turbulent flows over flat obstacles
[Sykes, 1980; Taylor et al., 1987; Hunt et al., 1988]. A
robust feature is that the flow can be divided into the
following three layers: (1) an outer layer, where the fluid
can be considered as inviscid (the inertial terms balance the
pressure gradient); (2) an inner layer, where the inertial
terms are negligible, (stress and pressure gradients balance);
and (3) a surface layer, which is responsible for the
aerodynamical roughness. Because of turbulent dissipation
and fluid inertia, an upwind shift between the shear stress
and the topography is generated at the matching region
between the outer and the inner layers, so that the basal
shear stress is in advance with respect to the bed.
[14] Many studies have been devoted to the relation

between shear stress and sediment transport, providing
numerous models as well as empirical data fits [Meyer-
Peter and Müller, 1948; Bagnold, 1956; Ungar and Haff,
1987; Anderson and Haff, 1988; Rasmussen et al., 1996;
Sauermann et al., 2001; Andreotti, 2004]. Regarding sedi-
ment transport, it is extremely important to distinguish
between steady/homogeneous and transient situations. In
steady state, one can evaluate the influence of the shear
stress magnitude ts on the value of the sediment flux. One
can also investigate the role of bed slope and cohesion on
the threshold shear stress value for motion inception tc. In
all cases, the sediment flux converges toward an equilibrium
value which is described as being ‘‘saturated.’’ Then,
transport laws precisely specify the expression of the
function Qsat(ts, tc).
[15] In nonhomogeneous or unsteady situations, however,

the actual flux q does not immediately adjust to the local
value of the shear stress. It needs some space or time to
reach its equilibrium value Qsat. This phenomenon can be
described as a relaxation process toward saturation of the
sediment flux. It was early observed and measured by
Bagnold [1941], and modeled by Sauermann et al. [2001]
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using a nonlinear equation. Such a relaxation mechanism is
not specific to the physics of sediment transport, but a rather
generic behavior of out of equilibrium systems. Usually a
single characteristic length (here the saturation length lsat) or
time is used to describe it as a first-order process. Impor-
tantly, this relaxation cannot be correctly described purely
by a shift between q and ts, as initially proposed by
Kennedy [1963] in the context of river dune formation.
Correcting this conceptual mistake, a linear first-order
saturation equation (an exponential relaxation toward equi-
librium) was introduced by Parker [1975]. Such a linear
description of the saturation was also adopted by Andreotti
et al. [2002]. In summary, the sediment flux is always
delayed with respect to the basal shear stress.

2.3. Saturation Length and Dune Size

[16] Combining these different ingredients in a set of
differential equations, the linear stability analysis shows that
the wavelength for the nucleation of dunes scales essentially
with the saturation length lmax / lsat [Andreotti et al.,
2002]. As turbulence is almost scale invariant, the aerody-
namical roughness marginally affects the value of the
most unstable mode (A. Fourrière et al., Ripples and dunes
in a turbulent stream; Part 1, Turbulent flow over topogra-
phy; Part 2, Evidences against the formation of river dunes
by primary linear instability, submitted to Journal of Fluid
Mechanics, 2009, hereinafter referred to as Fourrière et al.,
submitted manuscript, 2009a and 2009b, respectively).
Similarly, the effect of bed slope significantly modifies
lmax only very close to the transport threshold (Fourrière
et al., submitted manuscript, 2009b; B. Andreotti et al.,
Measurements of the aeolian sand transport saturation
length, submitted to Geomorphology, 2009).
[17] Discussion of the physical mechanisms responsible

for the saturation, i.e., the determination of the parameters
that control lsat, is a separate issue. Grain inertia may be a
relevant hypothesis as it explains the main difference of
dune size in aeolian, subaqueous and Martian conditions
[Claudin and Andreotti, 2006]. In this case, lsat / (rs/rf)d,
where rs/rf is the grain to fluid density ratio and d is
the grain diameter. Nevertheless, other mechanisms have
been proposed for subaqueous ripples by Charru [2006]
and for Martian dunes by Parteli and Herrmann [2007]
(see also Andreotti and Claudin [2007] and Parteli et al.
[2007a]).
[18] This important debate is however unrelated to the

purpose of the present paper. Instead, as lmax and smax are
the natural length and time scales of the instability, the idea
is to estimate the dispersion relation of our CA dune model.
Then, the most unstable wavelength in the numerical
simulations may be directly compared to in situ measure-
ments of this quantity.
[19] How can one get a good estimate of lmax from field

data? Once again, lmax is not the size of a single (devel-
oped) dune, but, strictly speaking, the wavelength of a dune
pattern emerging from a flat bed. Emerging dunes are in fact
generically present as superimposed patterns on the flanks
of large enough dunes, such as barchans [Elbelrhiti et al.,
2005]. lmax can then be computed as an ensemble average
of the crest to crest distances of these superimposed
undulations. A typical value measured on the barchans of
Atlantic Sahara is lmax ’ 20 m.

[20] That does not mean that smaller dunes cannot be
observed. As a result of a complex interaction between
larger dunes, some small, disappearing structures may be
observed locally. In addition, and more importantly for our
present purpose, lmax is the wavelength of the most but not
the only unstable mode. In fact, the unstable range includes
all large wavelengths down to a cutoff lc, which corre-
sponds to a vanishing growth rate, s(kc) = 0. Interestingly,
lc also scales with lsat as it is roughly a fraction (a half) of
lmax [Andreotti et al., 2002]. This cutoff value can be
interpreted as the typical size of the smallest dunes [Kroy
et al., 2002a, 2002b]. This is consistent with Bagnold’s
observation that very small dunes are on the order of 10 m
long [Bagnold, 1941]. On the other hand, after the super-
imposed pattern has emerged, it quickly leaves the linear
regime and starts coarsening. This is why the measure of the
average distance between secondary slip faces superim-
posed on very large dunes can give larger values than the
above 20 m. For example, we measured around 35 m on
megabarchans of Atlantic Sahara [Elbelrhiti et al., 2005]. In
summary, although the determination of the value of lmax

from field data is inevitably subjected to some uncertainty,
an average and typical value between 10 and 35 m seems to
be reasonable.

3. Model

[21] A cellular automaton for sediment transport is cou-
pled with a lattice gas cellular automaton model (LGCA) in
order to mimic the interplay between the bed form dynam-
ics, the fluid flow and the bed shear stress. Despite the
additional challenge we face in coupling both models
together, a major advantage of such a hybrid modeling is
to eliminate some arbitrary descriptions of the flow. Then,
local dependencies on flow patterns and the impact of
sediment motions on the transport capacity can be explicitly
taken into account.

3.1. A 3-D Cellular Automaton Model for Sediment
Transport

[22] A 3-D regular rectangular lattice is used to compute
the evolution of a layer of erodible sediment lying on a flat
bedrock. The aspect ratio of an elementary cell is a
parameter of the model (see section A1). Here, for numer-
ical efficiency in the coupling between this sediment trans-
port model and the LGCA, an elementary cell is a cube of
edge length l0 and not a slab of sediment as is usually the
case in cellular automaton models for dune dynamics
[Nishimori and Ouchi, 1993; Werner, 1995].
[23] The indices (i, j, k), i 2 [1, L], j 2 [1, L], k 2 [1, H]

are the labels of the Cartesian coordinates. The cell ci,j,k can
be in one of the following three states: (1) a volume of fluid,
(2) an immobile volume of sediment, and (3) a volume of
sediment in motion. For the sake of simplicity, the two
sedimentary states have the same density, and they differ
only in their ability to move.
[24] The entire dynamics are controlled by the three states

through local interactions between neighboring cells. We
consider only nearest neighbor interactions and an elemen-
tary cell may change state only if it shares a boundary with a
neighboring cell in a different state. These pairs of nearest
neighbor cells are called ‘‘doublet.’’ Thus, we analyze an
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evolving population of doublets over time. Nevertheless, all
the possible configurations of doublet do not lead to a
change in state, and with respect to the physics of sediment
transport, we use only a limited number of transitions from
one configuration to another. Overall, in order to ensure
mass conservation, these transitions do not modify the
number of sedimentary cells.
[25] We isolate individual physical processes and associate

each of them with a specific set of transitions according to
the direction of the flow. Thus, erosion and deposition
phases are not joined into a more general ‘‘saltation rule’’
as is the case in classical cellular automaton models for dune
dynamics. Instead, as shown in Figure 2, we have transi-
tions for
[26] 1. Erosion, which is the initiation of movement of a

sediment layer due to the bed shear stress imposed by the
flow. This erosion process does not discriminate between
different grain motions (i.e., saltation and reptation). Nev-
ertheless, it involves transitions in horizontal and vertical
directions to account for drag and lift forces that initiate
grain movement.
[27] 2. Transport, which is the motion of sediment.

Mobile sediment layers can be transported upward and in
the direction of the flow.
[28] 3. Deposition, which is the end of sediment move-

ment. This deposition process is enhanced by topographic
obstacles and occurs faster on slopes of preexisting
structures.
[29] 4. Gravity, which is the fall of sediment under its

own weight. Gravity prevents further motions and leads to
deposition.
[30] 5. Diffusion, which is the random motion of sedi-

ment perpendicular to the flow. Diffusion disperses the
grains and flattens the topography.

[31] In this preliminary work, transitions are extremely
simplified in order to reduce the number of parameters. It is
clear that more realistic (complete) sets of transitions should
be implemented in the future to concentrate on different
aspects of sediment transport: saltation, reptation, armoring.
However, considering all the physical mechanisms together,
transitions cannot be examined in isolation because only
their combined and repeated actions are able to reproduce
realistic sediment transport properties when averaged over
space and time. For example, vertical deposition rates are
the result of transitions associated with deposition and
gravity. Similarly, sediment transport occurs only after a
sequence of transitions that reproduce the initiation of
movement (erosion), transport, and the end of movement
(deposition).
[32] An important ingredient of the model is that each

transition is characterized by a rate parameter with the
dimension of a frequency. These transition rates introduce
into the model the characteristic time scales of the physical
mechanisms under consideration (Table 1). In practice, the
whole process can be described as a generalized Poisson
process (see Appendix B and Narteau et al. [2001]). Given
a doublet transition from configuration u to v and the
associated rate parameter L, the probability that a doublet
in configuration u undergoes a transition toward configura-
tion v in the infinitesimal time interval dt is Ldt; for n
doublets in configuration u the probability to have one
transition toward the configuration v in the infinitesimal
time interval dt is nLdt. Extended to the entire population of
doublets and all active transitions at a given time, the
probability per unit of time to have a single transition is
simply proportional to the sum of all the transition rates. In
other word, the time delay before the next transition is
inversely proportional to the sum of all the transition rates.

Figure 2. Active transitions of doublets in the cellular automaton model for sediment transport.
Different sets of transition are associated with deposition, erosion, transport, gravity, and diffusion. Here
{Lc, Le, Lt, Lg, Ld} are transition rates with units of frequency; a and b are positive constants. The
central inset shows the direction of the flow and the orientation of the nearest neighbors in a regular cubic
lattice.
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Then, the main point in our algorithm is that at each
iteration (i.e., time step) only one doublet (i.e., two cells)
undergoes a transition from one configuration to another.
The time step, the transition type, and the doublet that
undergoes this transition are randomly chosen according to
the present state of the system. This algorithm is therefore a
time-dependent stochastic process whose current rate is
given by the number of active transitions over time (i.e.,
the sum of all transition rates of active doublets).
[33] When the buildup of sediment exceeds the angle of

repose, avalanches occur. These avalanches are introduced
into the model via the dynamics of the Bak et al. [1988]
sandpile model. If the height difference between two
neighboring columns of sediment exceeds nc cells, the
highest sedimentary cells of the highest column are ran-
domly redistributed onto the lower neighboring sites. As
this redistribution alters the height differences, new redis-
tributions of cells may occur, triggering a so-called cascade
mechanism. As a result, a pile of sedimentary cells cannot
have slopes steeper than a critical slope determined by the
nc value (see section A2).
[34] All boundary conditions are incorporated into the

sediment transport model by using the following specific set
of states and transitions:
[35] 1. A neutral state is used to construct solid bound-

aries. Cells in a neutral state do not interact with their
neighborhood and they are not involved in any transition.
For example, the solid bedrock on which the sediment is
moving is a horizontal plane composed of neutral cells.
[36] 2. A removal state is used to introduce output fluxes

of sediment. It requires at least one transition in which a
sedimentary cell in contact with a removal cell is replaced
by a fluid cell. Here, these removal states occur along the
downwind border.
[37] 3. An injection state is used to introduce input fluxes

of sediment. It requires at least one transition in which a
fluid cell in contact with an injection cell is replaced by a

sedimentary cell. Here, these injection states occur along the
upwind border.
[38] Transitions involving removal/injection states are

associated with different rates that control the intensity of
output/input fluxes over time. Then, according to the
orientations of these transitions, the magnitude of their
transition rates, and the positions of neutral cells, we can
accurately replicate almost any type of geometry and
boundary condition.

3.2. A Lattice Gas Cellular Automaton Model

[39] Simultaneously with the evolution of the topography
in the model of sediment transport, a lattice gas cellular
automaton model is used to compute the flow [see Hardy et
al., 1976; Frisch et al., 1986; Chopard and Droz, 1998;
Rothman and Zaleski, 2004, and references therein]. This
numerical method converts discrete motions of a finite
number of fluid particles into physically meaningful quan-
tities and offers an alternative to the full resolution of the
Navier-Stokes equations. In addition, such a discrete model
seems particularly useful to analyze bed form dynamics
because it permits introduction of changing boundary con-
ditions (i.e., the evolving topography) that are extremely
difficult to tackle with conventional techniques implement-
ing a set of differential equations.
[40] To reduce the computation time, we do not imple-

ment a 3-D LGCA. Instead, we consider a set of uniformly
spaced vertical planes parallel to the direction of the flow
(this spacing Ds = 5 cells is a parameter of the model). Each
plane is composed by the square lattice of the model of
sediment transport (see section A1), and, confined to this
plane, fluid particles can fly from cell to cell along the
direction specified by their velocity vectors. Within this
square lattice, we use a multispeed model taking into
account motions of particles between nearest and next
nearest neighbors [d’Humières et al., 1986]: slow speed
particles are moving between nearest neighbors, fast
speed particles are moving between next nearest neighbors
(Figure 3a). Two fluid particles cannot sit on the same site and
interactions between particles take the form of local instan-
taneous collisions on sites with several particles (Figure 3b).
Then, the evolution of the system during one iteration (or
motion cycle) consists of two successive stages: a propaga-
tion phase during which particles move from their cells to
their neighbors along the direction of their velocity vectors,
and a collision phase during which particles on the same cell
may exchange momentum according to the imposed colli-
sion rules (Figure 3b). These collision rules are chosen in
order to conserve both mass and momentum.
[41] All boundary conditions of the flow are described in

section C1. The most important for our interests is that fluid
particles can move only within the fluid state of the cellular
automaton of sediment transport. Other states are considered
as boundaries on which the fluid particles are rebounding.
Accordingly, motions of fluid particles adapt to changes in
topography, and the flow field is strongly coupled to the bed
form dynamics. In order to implement this feedback mecha-
nism of the topography on the flow, we continuously monitor
the evolution of the bed topography; the height of the interface
between the sediment and the fluid. Thus, we can evaluate the
direction of the normal to this topography, n!, and determine

Table 1. Units and Values of the Parameters of the Model of

Sediment Transporta

Variable Description Units Values

Elementary Units
l0 Length [L]
t0 Time [T]
t0 Stress [M][L]�1[T]�2

Model Parameters
L System width and length l0 [400, 600]
H System height l0 100
L0 Transition rate for erosion 1/t0 1
Lt Transition rate for transport 1/t0 1.5
Lc Transition rate for deposition 1/t0 0.5
Lg Transition rate for gravity 1/t0 105

Ld Transition rate for diffusion 1/t0 0.01
a Erosion/transport coefficient 1 0.1
b Deposition coefficient 1 10
t2 � t1 Erosion range t0 100

aTransition rates for erosion, deposition, and transport are chosen close to
one with Lc < L0 < Lt. Gravity (Stokes’ law) and diffusion are occurring
over much shorter and longer periods of time, respectively. We chose Lc �
L0 � Lt. Here a < 1 corresponds to the ratio between vertical and
horizontal transition rates for erosion and transport and b > 1 corresponds to
the ratio between deposition rates on flat and rough surfaces (see Figure 2).
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locally how a fluid particle rebounds on a sedimentary cell
(see section C2).
[42] In order to determine both components of the local

velocity vector in each plane of the LGCA, velocity vectors
of fluid particles are averaged over lw � lw cells and tw
consecutive motion cycles (here lw = 5 and tw = 50). This

averaging is necessary to reduce the statistical noise, but
similar results can be obtained with different sets of param-
eters {lw, tw}. If necessary, between two planes of the
LGCA, each component of the local velocity vector is
linearly interpolated from adjacent values along lines per-

pendicular to these planes. The velocity field V
!
, expressed

in terms of a number of fluid particles, and normal to
topography is then used to calculate the bed shear stress

ts ¼ t0
@V
!

@ n!
; ð1Þ

where t0 is the stress scale of the model.
[43] Assuming a linear relation between bed shear stress

and erosion rate, we consider that, in the model of sediment
transport, the transition rate for erosion obeys the equation

Le ¼

0 for ts � t1

L0

ts � t1
t2 � t1

for t1 � ts � t2

L0 else;

8>>><
>>>:

ð2Þ

where L0 is a constant rate, t1 is the threshold for motion
inception and t2 is a slope parameter (ts < t2). (ts � t1) is
the excess shear stress from which we can account for the
feedback mechanism of the bed shear stress on the
topography. During the numerical simulations, the only
free parameter is t1, the lower threshold of erosion. All the
other parameters of the model are kept constant including
(t2 � t1). Thus, we modify the excess shear stress and we
can associate changes in the t1 value with variations in flow
velocity: the higher the t1 value is, the lower the flow
velocity is.
[44] Finally, the sediment transport and the LGCA are

fully coupled via the rebounds of fluid particles on the
sedimentary cells and the dependency of the erosion rate on
the bed shear stress. As the density of sedimentary cells in
motion is mainly controlled by the intensity of the erosion
process, the flow also has an influence on transport and
deposition processes. However, injecting more complete,
but more complicated, feedback mechanisms is already
possible, and, in the future, the flow properties (i.e., ts)
can also play a role in altering the transition rates for
transport, deposition and diffusion.
[45] In practice, the numerical simulations consist of

rapid switching between the model of sediment transport
and the LGCA (see Appendix D). In fact, we estimate the
frequency at which the motion cycles of the LGCA should
occur from the transition rates of erosion and deposition
(Table 1) Thus, the flow is recalculated over time scales
much shorter than the characteristic time required to move
an individual sedimentary cell, and we compute the simul-
taneous evolution of topography and bed shear stress.

4. Typical Dune Patterns of the Cellular
Automaton Model

[46] In the model of sediment transport, all parameter
units are expressed in terms of l0, the elementary length of
the cellular automaton, and t0 = 1/L0, the time scale for
erosion (Table 1). We assume the transition rates for
deposition and transport are slightly lower and higher,

Figure 3. (a) The different velocity vectors in the lattice
gas cellular automaton model. We have kV2

ik =
ffiffiffi
2

p
kV1

ik.
(b) Different examples of collisions between fluid particles
(see the entire list by d’Humières et al. [1986]). Particles
and their velocity vectors are represented by arrows. Each
dot represents the nodes of the LGCA and the center of the
cells of the model of sediment transport. In the top right, we
show four of these cells in light gray and the connections
along which the fluid particles are moving (dashed lines).
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respectively, than the transition rate for erosion. Thus, there
are always sedimentary cells in motion. As the transition
rate for gravity is determined from the Stokes velocity, it is a
few orders of magnitude larger than all the other transition
rates. In contrast, the transition rate for diffusion is a few
orders of magnitude smaller. In all the computations pre-
sented here, these various parameters are held constant. A
systematic and quantitative analysis of the dune instability
over the entire parameter space is planned in future work.
We note, however, that initial tests show that the qualitative
pattern does not change when parameter values are varied
over an order of magnitude.
[47] The characteristic length and time scales {l0, t0} are

discussed in section 5 from the linear stability analysis of a
flat sediment bed and comparisons between observations
and model outputs. In this section, we present some
distinctive morphological features of the model which are
particularly relevant to this objective. A more complete
description of the morphology of basic dune types generated
by the model (i.e., barchan, linear and transverse dunes) as
well as the influence of the bed shear stress on the dynamics
of these dunes are analyzed in more detail in the future.
[48] Figure 4a shows the evolution of a square pile of

sediment from t/t0 = 0 to t/t0 = 3800. In order to ensure mass
conservation, each sedimentary cell ejected from the system
in the direction of the flow is reinjected randomly through
the opposite boundary. Over a short time, from the transient
growth of some perturbations, secondary structures appear
and propagate on the flat surface at the top of the pile.
Smaller structures being faster, they rapidly merge with
larger ones to form superimposed transverse dunes. Mean-
while, the face oriented against the direction of the flow is
accumulating all the sediment that is uniformly reinjected in
the system. As a consequence, this face is continuously
growing in height and the recirculation bubble is continu-
ously increasing in length. Downstream of the highest
zone of the dune, bed shear stress and sediment flux are
much lower than on the side of the dune, and the super-
imposed transverse dune form horns, along which are
concentrated most of the output sand fluxes. The face
against the flow continues to grow until it entirely covers
the initial pile of sediment. Simultaneously, horns grow
from both sides of the dune, ejecting smaller dunes at
regular time intervals. As this evolution proceeds, the
structure moves in the direction of the flow and its shape
converges toward a quasi-stationary equilibrium state which
is commonly described as a crescentic barchan dune.
[49] Dynamically, a typical feature of this barchan dune is

the systematic occurrence of secondary structures on the
surface of the dune. These superimposed bed forms nucleate
at a constant rate on the face exposed to the flow. Then, they
propagate and can grow by merging until they collapse
when they reach the slip face of the major dune. Along
transect lines parallel to the flow, the distance between two
successive slip faces is almost constant and a characteristic
wavelength of about 40 l0 is measured at different times.
Not surprisingly, this is approximately the same wavelength
as for the oscillations observed on the flat surface at the top
of the initial sand pile.
[50] Superimposed bed forms are distinct features that can

be observed across almost all types of dunes (Figure 1). In
the model, this is also the case, and Figure 4b illustrates

how secondary structures nucleate and propagate over
transverse dunes. In these numerical simulations, we use
periodic boundary conditions in horizontal directions and
the initial condition is a flat and thick layer of sedimentary
cells. During the first phase, the destabilization of the flat
layer of sediment, we observe the formation of small
transverse dunes with a characteristic wavelength of about
40 l0. These transverse dunes are growing by merging until
they reach a characteristic length of about 80 l0. During this
growth phase, the number of terminations decreases and the
density of secondary dune patterns on the faces exposed to
the flow is almost always the same. These superimposed
structures destabilize the dunes and generate defects from
which terminations may appear or migrate from one dune to
another.
[51] The similarities between the elevation profile and

bed shear stress indicate unambiguously that, in the model,
these two parameters are highly coupled with one another
(Figures 4c and 4d). This is true at the length scale of the
dune but also for the superimposed bed forms at smaller
length scales. Most of the time, it is even easier to
distinguish topographic irregularities from the stress field.
For example, small waveforms in the bed elevation profile
across a transverse dune field (Figure 4c) correspond to
similar but larger oscillations of the bed shear stress
(Figure 4d). In both cases, the oscillation has a wavelength
of approximately 40 l0.
[52] In the model, the superimposed dune patterns that are

observed across barchan and transverse dunes are similar in
many respects. More interestingly, there are also similarities
in the destabilization of a flat sediment layer and the
nucleation of superimposed structures. All these indices
suggest that similar processes are operating during the
nucleation of dunes and their destabilization by secondary
bed forms. Consequently, the characteristic length scale for
the formation of these structures give us the opportunity to
set the characteristic length and time scales of the model
from field observations (Figure 1).

5. Setting the Length and Time Scales of the
Model

[53] In this cellular automaton approach, the macroscopic
properties of sand transport result from the interactions
between the elements of the system over time, and they
cannot be derived analytically from the parameterization of
the model. To set the length and time scales of the model,
we run the model under specific conditions.

5.1. Linear Stability Analysis of a Flat Sand Bed

[54] As discussed in section 2, the standard tool to
investigate the properties of an instability is to perform
the linear stability analysis. In order to compute the disper-
sion relation s(l) in our model, we generate an entire range
of bed elevation profiles by superimposing sinusoidal waves
of wavelength l and vanishing amplitude A onto a flat sand
bed (Figure 5). Above these beds, we stabilize the flow
and, when a quasi-stationary equilibrium state is reached,
at t = 0, we start the model of sediment transport. Then, at
regular time intervals, we estimate the amplitude and the
mean wavelength of the bed profile from the autocorrelation
function (see caption of Figure 5). For all wavelengths, we
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estimate the time period over which the initial wavelength
of the perturbation remains unchanged. During this time
period, we verify that the growth in amplitude is consistent
with an exponential function, and, from the best-fit solution
we estimate the growth rate (Figure 5).

[55] Figure 6 shows the magnitude of the growth rate s(k)
with respect to the wave number k = 2p/l for three different
t1 values. They all exhibit the same general shape, with a
positive region for a finite range 0 < k < kc and a negative
one for k > kc. Furthermore, one can identify a clear
maximum corresponding to the fastest growing mode

Figure 4. (a) Evolution of a square sand pile until a crescentic barchan shape reaches a quasi-stationary
equilibrium state (H = 100 l0, L = 600 l0). (b) Formation of a transverse dune field until it reaches a quasi-
stationary equilibrium state (H = 100 l0, L = 400 l0). The average number of dunes, defects, and
terminations are almost constant despite some random fluctuations. In Figures 4a and 4b, t1 = 20 t0.
Note the characteristic length scales for the nucleation of dunes over short time and the formation of
secondary bed forms over long time. (c) Along a transect line parallel to the direction of the flow (see AA0

in Figure 4b), the difference between the elevation z and the local mean elevation zw averaged over a
sliding window of length 40 l0. (d) The bed shear stress at the solid fluid interface along the same transect
line. In Figures 4c and 4d, the elevation profile is shown in black at the top of the graph.
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Figure 6. Results of the linear stability analysis for (a) t1 = 0, (b) t1 = 10 t0, and (c) t1 = 20 t0. Crosses
are the estimated growth rates as a function of the disturbance wave number k = 2p/l for wavelength in
the range 10 l0 < l < 385 l0 by steps of 0.5 l0. The red curve is the best fit of these data using equation (3).
The set of adjustable parameters {s0, a, b} is {14 10�3 t0

�1, 0.65, 5.0} (Figure 6a), {8.8 10�3 t0
�1,

0.59, 5.5} (Figure 6b), and {3.5 10�3 t0
�1, 0.41, 7.6} (Figure 6c). The dashed line shows the position

of the fastest growing mode kmax = 2p/lmax.

Figure 5. Linear stability analysis in the model with examples of (a) stable and (b) unstable
wavelengths. As shown on the left, the initial condition at t = 0 is a flat sand bed disturbed by a sinusoidal
wave of wavelength l (l = 13 l0 (Figure 5a); l = 31 l0 (Figure 5b)). The solid line is the continuous
profile from which the initial bed profile h(l, x, 0) has been discretized. The autocorrelation function of
the bed profile C(l, l, t) = hh(l, x, t)h(l, x + l, t)i � hh(l, x, t)i2 gives the amplitude A(l, t) =
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C l; 0; tð Þ

p
and the mean wavelength (the position of the first peak). Assuming a linear regime, A(l, t)

is fitted by a exponential function of the form exp(s(l)t) during the period over which the mean
wavelength remains unchanged. If s(l) > 0, the wavelength is unstable and the pattern is growing; if
s(l) < 0, the wavelength is stable and the pattern is decaying. The most unstable wavelength lmax is the
wavelength at which s(l) reaches a maximum.
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kmax = 2p/lmax, which gives therefore the characteristic
wavelength for the formation of dunes on a flat sand bed.
To quantify this fastest growing mode, we fit our data
points to the function

s kð Þ ¼ s0 akð Þ2 1� b akð Þ
1þ akð Þ2

; ð3Þ

which is the analytical expression of the growth rate
proposed by Andreotti et al. [2002] (see also Claudin and
Andreotti [2006]; Fourrière et al. (submitted manuscript,
2009b)). Using this equation, the three fitting parameters
{s0, a, b} are determined by a nonlinear least squares
fitting procedure.
[56] From the best-fit solution shown in Figure 6, we

observe that the exact position of the maximum depends of
the t1 value: lmax is decreasing for an increasing wind
strength (see discussion in section 6). Nevertheless, we
approximately get lmax = 2p/kmax � 40 l0. Interestingly, this
value is very close to the characteristic length of secondary
bed forms in Figures 4a and 4b. More importantly, the lmax

value will be the key point of the scaling relation between
the dunes in the model and those in the field.
[57] Figure 6 also shows that equation (3) fits the data

points equally well for a wide range of t1 values. Then, in
addition to the determination of the maximum growth rate,
it is possible to use equation (3) to interpret the values of the
three fitting parameters {s0, a, b} with respect to contin-
uous models for sand transport and dunes [Andreotti et al.,
2002] As a matter of fact, s0 is proportional to the input
sand flux, b encodes hydrodynamics effects that determine
variations of the flow velocity above the elevation profile
[Jackson and Hunt, 1975; Fourrière et al., submitted man-
uscript, 2009a] and a is related to the saturation length lsat
of the sand flux. From the amplitude of the dispersion
relation, we consistently observe, for instance, that the s0
value is decreasing with an increasing t1 value (i.e., a
decreasing flow strength).

5.2. Saturation Length and Flux

[58] Because of the negative feedback of the moving
grains on the flow, a wind of a given strength can only
transport a limited amount of sediment. Furthermore, trans-
port is observed only if the shear stress ts applied by the
fluid on the bed is above a threshold tc. As a consequence,
generic transport laws are of the form

Qsat ¼
0 if ts � tc
tgs ts � tcð Þ if ts � tc;

�
ð4Þ

where g is a positive (or null) constant [Bagnold, 1956;
Anderson and Haff, 1988; Ungar and Haff, 1987;
Rasmussen et al., 1996; Andreotti, 2004]. In our model,
we can directly compute this saturation flux on a flat sand
bed, and Figure 7 shows how the Qsat value is decreasing
with respect to a decreasing flow strength (i.e., an increasing
t1 value). In addition to this direct measurement, the exact
relation can be derived from equation (2), an expression
which can be changed in the future to adapt to various
transport laws.
[59] As described in section 2, the space lag lsat between

the actual flux and its saturated value can be modeled by a
first-order relaxation which can be expressed as

@x q � Qsat � q

lsat
: ð5Þ

This saturation length can also be extracted from the linear
stability analysis because, in equation (3), a = lsat/l0. As
shown in the caption of Figure 6, the best-fit value of the
parameter a indicates that lsat � 6 l0 with a slight tendency
to decrease with increasing flow strength.
[60] In order to check consistency, we use our model to

perform a direct calculations of this saturation length, and
we consider a numerical setup which is directly inspired
from experimental data [Bagnold, 1941; Elbelrhiti et al.,
2005; Andreotti et al., submitted manuscript, 2009]. Indeed,
in these simulations, the initial condition is characterized by
a transition from a flat bedrock to a flat sand bed close to the
boundary across which the flow is injected (Figure 8a). In
addition, the boundary conditions are such that sand flux is
null above the bedrock. Then, for a given flow strength (i.e.,
t1 value), we calculate the sand flux above the sand bed and
along the direction of the flow. Then, over short time, we
estimate how the sand flux changes from zero to its equi-
librium value. Figure 8b show these calculations for t1 = 0
(symbol). We then fit to these points using an exponential
law of the form q/Qsat = 1� exp(�(x� x0)/lsat), which is the
solution of equation (5). The best fit gives lsat = 6.9 l0, a
value which is in good agreement with the a values that
have been obtained in the linear stability analysis from the fit
of the dispersion relations (Figure 6).

5.3. Characteristic Length and Time Scales of the
Model

[61] We are now ready to set the characteristic length and
time scales of our model. Elbelrhiti et al. [2005] have
shown that the windward slope and the flanks of barchans
behave as flat beds and generically show superimposed bed
forms as soon as they are large enough. The analysis of the

Figure 7. The saturated flux with respect to the t1 value.
Qsat(t1) is normalized by its value Qsat(t1 = 0). Note that an
increasing t1 value corresponds to a decreasing flow
strength.
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wavelength distribution of these secondary structures gives
a characteristics value on the order of 20 m. This value is
not specific to the Atlantic Sahara where these measure-
ments were performed. Except in some places where the
wind hardly exceeds the transport threshold (Andreotti et
al., submitted manuscript, 2009), it is rather typical and may
be representative of the smallest bed forms in dune fields.
Following the linear stability analysis, we can then associate
this length scale with lmax. As we found lmax � 40 l0 in the
model, we must therefore set in our cellular automaton
approach

l0 � 0:5m: ð6Þ

It is important to emphasize that this value depends on the
specific lmax values estimated in our model and observed in
nature. As these values may vary within the entire parameter
space of the model and in different types of natural
environments [Claudin and Andreotti, 2006], an l0 value of
0.5 m does not have any kind of generality and should not
be considered as a definitive value for this CA dune model.
[62] From the elementary length scale l0, it is now possible

to set the characteristic time scale t0. One more time, we
achieve this with respect to experimental observations, and
more precisely from the relationship between the wind
velocity and the saturated flux. First, from equation (4), it
is possible to compute the ratio between the saturated flux
Qsat and its value Qsat

0 for tc = 0. Introducing the shear
velocity u* � ts

1/2, we get

Qsat

Q0
sat

¼ 1� uc

u
*

 !2

: ð7Þ

Wind velocity time series allow us to compute the average
value hu

*
/uci, which would correspond to a constant wind

strength producing the same sediment flux. From this shear
velocity ratio, we can compute the value of Qsat/Qsat

0 with
equation (7). Consistently, we choose the same value for
Qsat(t1)/Qsat (t1 = 0). Then, from Figure 7 we can read the
corresponding t1 value. Finally, matching the average
saturated flux in the model to that in the dune field, we get

t0 ¼
Qsat t1ð Þ
Qsath i l20 : ð8Þ

In this formula, Qsat(t1) is the saturated flux in the model,
measured in units of t0 and l0, and hQsati is the saturated
sand flux measured from the wind data.
[63] For example, in the Atlantic Sahara (Figure 1d),

the wind data give hu
*
/uci � 1.6 and hQsati � 100 m2 a

[Elbelrhiti et al., 2005] and we obtain t1 � 9 t0. Inversely,
for t1 = 20 t0, the value used for the numerical simulations
shown in Figure 4, we obtain hu

*
/uci � 1.1. For grains of

180 mm such as those of the desert in Atlantic Sahara, this
ratio corresponds to hQsati � 12.5 m2 a [Andreotti, 2004].
Then, equation (8) gives t0 � 7.8 � 10�4 a and the
simulations shown in Figures 4a and 4b last for 3 and
11 years, respectively.

6. Conclusion and Perspectives

[64] We propose a new model for bed form dynamics,
which relies on couplings between a cellular automaton for
sediment transport and a lattice gas cellular automaton for
flow dynamics. By construction, this model allows inde-
pendent investigations of the different types of transport,
erosion and deposition processes. Here, we focus on the

Figure 8. Estimations of saturation length and saturated flux in the model for t1 = 0. (a) Initial
condition of the model of sediment transport; close to the boundary across which the flow is injected
there is a transition from a flat bedrock to a flat sand bed located at x0 = 12 l0. (b) Sand flux over a short
time period along the direction of the flow (crosses) and best exponential fit to these data in relation to
equation (5) (see text). The fit gives Qsat = 0.23 lo

2/t0 and lsat = 6.9 l0.
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hydrodynamic instability induced by the relationship
between the bed shear stress and the topography.
[65] From observations of our numerical dune fields and a

linear stability analysis, we have clearly identified a char-
acteristic length scale lmax for the formation of dunes in the
model. The same instability is also responsible for the
nucleation of secondary bed forms and their propagation
on faces of dunes exposed to the flow. From comparisons
with dune field measurements, we deduce a unit length
scale l0 for our discrete model. Not surprisingly, this length
scale is few times lower than the saturation length lsat, the
relevant length scale for dunes.
[66] The discussion of scale setting in section 5.3 was

implicitly based on a fixed value lmax � 40 l0. However, as
shown in Figure 6, the position of the maximum growth rate
depends on the t1 value. Recalling that this parameter
encodes the value of the ratio u

*
/uc, we can compute the

wavelength of the most unstable mode as a function of the
wind strength, which is displayed in Figure 9. lmax has a
gentle trend to decrease with u

*
/uc, and reaches a plateau at

the value 40 l0 as soon as the velocity ratio is around 1.5.
This general decreasing trend is in agreement with recent
studies [Parteli et al., 2007a, 2007b; Andreotti and Claudin,
2007; Andreotti et al., submitted manuscript, 2009]. Never-
theless, further investigation is needed to attribute this
behavior to a precise mechanism in the model.
[67] In this cellular automaton approach, the ratio lmax/lsat

between the characteristic length scale for the formation of

dunes and the saturation length is on the order of 6.5.
This value is less by a factor of 3 than what we estimated
from field and experimental measurements (Andreotti et al.,
submitted manuscript, 2009). Similarly, the value for the
fitting parameter b in the dispersion relation (equation (3))
is off by a factor of 4 in comparison with what we can
compute within a complete hydrodynamical model
(Fourrière et al., submitted manuscript, 2009a). These
quantitative discrepancies may be partly attributable to the
simple linear closure (see equation (2)) that we have taken
to relate the basal shear stress to the velocity gradient. This
relation could be replaced by a more sophisticated function
that better describes the turbulent nature of the flow above a
rough topography.
[68] Sediment transport and the subsequent presence of

bed forms are observed on different planetary bodies (e.g.,
Earth, Mars, Titan), under water, in dry deserts as well as in
Antarctica [Claudin and Andreotti, 2006, and references
therein]). In these different cases, the characteristic time and
length scales associated with these bed forms can change by
a few orders of magnitude, because of the different values of
the relevant parameters, in particular fluid and sediment
densities and grain size. However, we expect that some of
these bed forms may be the result of the same instability
mechanism [Claudin and Andreotti, 2006]. This means for
example that, with respect to additional physical mecha-
nisms related to specific environmental features, our model
can be directly used to analyze dune fields on Earth and

Figure 9. Evolution of the most unstable wavelength with respect to the flow velocity dimensionalized
by the threshold velocity for sediment transport. The inset shows a wider range of velocity in a
logarithmic scale. Note the well-defined plateau when u

*
/uc ! 1.
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Mars. The only modification needed is the setting of the
length and time scales {l0, t0} to the correct values.
[69] In all natural environments where the dune insta-

bility can be observed, our discrete model may therefore
be a useful tool to quantify sediment fluxes. Most impor-
tantly, it retains all the advantages of discrete models in
analyzing pattern formation, but also exhibits, with respect
to the flow, the instability mechanism which is likely to
govern the development of dune patterns and the nucle-
ation of secondary bed forms as well as the selection of
dune sizes (section 2). Hence, it has to be developed to
study a population of dunes and its stability under rotating
wind conditions and fluctuating wind strength.
[70] Our cellular automaton is 3-D and can therefore be

used not only to describe surface processes, but also the
internal sedimentary structure of the dunes [Bristow et al.,
2000, 2007]. In the future, these structures can be examined
(1) to test different scenarios for the formation of dunes,
(2) to determine accumulation features in the presence of
secondary bed forms and also (3) to analyze the effect of
collisions between dunes.
[71] Finally, with our model, we establish a link between

cellular automaton methods and continuum mechanics in
such a way that we will be able to constrain structural
complexity of dune fields by a set of well-defined physical
quantities. We believe that the discontinuous nature of our
model and the feedback mechanisms between topography
and bed shear stress will allow this system to capture in more
detail some of the most distinctive features of the evolution of
complex dune fields in various natural environments.

Appendix A: Geometric Considerations

A1. Regular Lattices

[72] We use a 3-D cellular automaton model for sediment
transport and a LGCA to compute the flow and quantify the
bed shear stress. Therefore there are two independent
lattices that need to be merged together. In the model of
sediment transport we have parameterized the aspect ratio
between height and length. As given by Baas and Nield
[2007], an elementary cell has a square base of length l0 and
a height h0. By definition, l0 � h0 and the adjustable aspect
ratio h = l0/h0 has to be an integer for the coupling between
the model of sediment transport and the LGCA. If h = 1, the
elementary cell has a cubic shape; if h > 1, the elementary
cell has a slab shape as in classical cellular automatons for
dune dynamics [Werner, 1995]. Thus, the 3-D lattice of cells
can be decomposed into 2-D horizontal square lattices and
2-D vertical rectangular lattices.
[73] In the LGCA, the collision rules conserve both mass

and momentum in such a way that the velocities of fluid
particles have to be the same in perpendicular directions
(see section 3.2). For this reason, motions of fluid particles
are implemented on regular square lattices. These square
lattices have to fit perfectly into the vertical rectangular
lattices of the model of sediment transport. Hence, each cell
of the model of sediment transport is vertically and hori-
zontally decomposed into n and nh cells of the LGCA (see
example in Figure A1). The positive integer n is a parameter
of the model that determines the edge length of one cell of
the LGCA (i.e., h0/n).

[74] Larger n and h values allow for the modeling of
smaller structures of the flow but require a longer compu-
tation time. Here, we take h = n = 1 for numerical efficiency.
In this case, the two lattices overlap perfectly (see Figure 3),
and elementary cells in both models have a similar square
shape with an edge length l0.

A2. Angle of Repose

[75] The angle of repose Q of the granular material that
forms our sediment layer is determined with respect to a
critical height difference between two neighboring piles of
sediment. This height can be expressed as a number of slabs
nc and we have

tanQ ¼ nc
h0

l0
¼ nc

h
: ðA1Þ

Most of the time, because of the discrete nature of the
system, it is necessary to choose the nearest positive integer
to determine the nc value. This is for example the case here
when we choose nc = 1 from h = 1 and Q = 34� (the angle of
repose of dry sand). Unfortunately, it gives an apparent
angle of repose of 45�. To simulate more realistic angles of
repose in the future, one solution is to approach the critical
slope with integer values of h and nc (e.g., tan(34�) �
2/3 () nc = 2 and h = 3, see section A1). However,
there are always 3-D artifacts in discrete methods that
calculate height differences between nearest or next nearest
neighbors.

Appendix B: Algorithm of the Model for
Sediment Transport

[76] All transitions of doublets occur sequentially over
time according to the present configuration of doublets
across the entire system (Figure B1). Thus, the system
dynamics can be regarded as a Markov chain, a time-
dependent stochastic process without memory. Practically,
the whole process is defined in terms of a Poisson process.

Figure A1. Examples of the overlapping lattices for
different h and n values. Gray cells represent elementary
structures of the model of sediment transport; black dots and
dashed lines represent the lattice nodes and the possible
trajectories of fluid particles in the LGCA, respectively.
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This is not only an extremely common distribution observed
in nature (i.e., exponential distribution of interevent times),
this is also the simplest, as it only depends on one rate
parameter. In addition, it possesses the elegant and useful
additive property: the sum of two independent Poisson
random variables with rates L1 and L2 is also a Poisson
random variable with rate L1 + L2.
[77] Let us consider that we have J active transitions. An

active transition i 2 [1, J] is notated T i, and T 1
i and T 2

i are

the initial and the final configurations of the doublet;
LT 1

i !T 2
i
is the transition rate associated with such a transi-

tion. NT 1
i
is the number of doublets in the configuration T 1

i

and

NT ¼
XJ
i¼1

NT 1
i

ðB1Þ

is the total number of active transitions.
[78] For each active doublet in the configuration T 1

i , the
occurrence of the transition T i obeys the Poisson distribu-

tion. Then, the waiting time tt for this transition to occur is
given by an exponential distribution characterized by a
unique rate parameter LT 1

i !T 2
i

P tt > Dtð Þ ¼ exp �LT 1
i !T 2

i
Dt

� �
: ðB2Þ

Generalizing the Poisson process to a population of active
doublets, the distribution of the waiting times tt until the
next transition is given by

P tt > Dtð Þ ¼ exp �PDtð Þ; ðB3Þ

where

P ¼
XNT

i¼1

NT 1
i
LT 1

i !T 2
i

ðB4Þ

is the total transition rate of the system.
[79] For a given doublet configuration at time t, we first

evaluate the number of doublets NT 1
i
(t) that can potentially

change their configuration. Then, we calculate P(t) the total
transition rate of the system. At each iteration only one
doublet undergoes a transition to a new configuration. The
time step Dt is therefore variable depending on the magni-
tude of P(t) (see equation (B4)). In practice, we draw at
random a value r1 between 0 and 1, and we consider that the
waiting time for the next transition to occur is

Dt tð Þ ¼ � 1

P tð Þ ln r1ð Þ: ðB5Þ

During this time step, the transition that occurs is also
randomly chosen with respect to a weighted probability
determined from

PT 1
i !T 2

i
tð Þ ¼

NT 1
i
tð ÞLT 1

i !T 2
i

P tð Þ : ðB6Þ

Numerically, we define a discrete cumulative distribution

function for which steps are proportional to the values of
PT 1

i !T 2
i
(t). Then, we draw at random a value r2 between 0

and 1. This value is associated with a step of the cumulative
distribution function which determines in turn the type of
transition that occur. Thus, transitions with the highest rates
have more chance to be selected but transitions with small
rates may also occur. Finally, when the transition i is

selected, we draw at random an integer between 0 and
NT 1

i
ðtÞ in order to identify the unique doublet that undergoes

this transition. Repeated a large number of times, such a
procedure permits the continuous monitoring of the bed
form dynamics.

Appendix C: Properties of the LGCA

C1. Boundary Conditions

[80] In all computations, fluid particles are vertically
confined between the sediment layer lying on flat bedrock
and a flat ceiling. This confinement prevents dissipation of
momentum by keeping the number of fluid particles con-

Figure B1. The algorithm of the model. NT i
1 is the number

of doublets in the configuration T 1
i
1, PT i

1!T i
2 is the

probability for a transition from T i
1 to T i

2 to occur during
the next time step Dt, and P is the total transition rate of the
system. At each iteration, or time step, a single doublet (i.e.,
two cells) changes its configuration. The time step, the
transition type, and the doublet are successively chosen
according to the present state of the system and three
random numbers (see text).
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stant. The density of fluid particles per site is taken equal to
1.5, the number of slow particles being twice the number of
fast particles. Meanwhile, we use periodic boundary con-
ditions in the horizontal direction so that fluid particles
exiting from one side are instantaneously reinjected on the
other. If the model of sediment transport uses non periodic
boundary conditions, we have to reinject a uniform flow
that does not depend on the topography. In this case, we
filter the velocity vectors at the boundary across which the
fluid particles are reinjected. This takes the form of permu-
tations between particles in order to conserve the mean
velocity. Moreover, in all cases, we impose a permanent
forcing to simulate an unperturbed flow far above the bed.
We achieve this by randomly replacing fluid particles
moving along the opposite direction, by fluid particles
moving along the prescribed direction of the flow. These
replacements are homogeneously distributed within the
entire system and concern 0.2% of the particles at each
iteration.

C2. Rebound Dynamics

[81] The normal vector n! is the vector perpendicular to
the surface defined by sedimentary cells. Its three compo-
nents are locally determined from the gradient using height
differences between sedimentary cells located at 2 l0 in all
directions.
[82] Usually in LGCA, no-slip boundary conditions are

imposed along the solid boundaries of the system. Then,
when a particle is colliding with a solid boundary, it returns
along the path from which it approached (a rotation of p of

the velocity vector). Here, we implement two different sets
of rebounds in order to introduce free-slip boundary con-
ditions along the ceiling and a turbulent boundary layer on
an irregular bottom.
[83] The top boundary conditions is therefore as follows:

if the angle q between the colliding particles and normal to
the topography is between �p/8 and p/8, the particles return
along the path from which they approached (a rotation of p
of the velocity vector); if not, the colliding particle rebounds
in a perpendicular direction according to the sign of q (a
rotation of ±p/2 of the velocity vector). In comparison with
a classical no-slip boundary condition, this rule introduces a
free-slip boundary condition on a flat topography, as is the
case along the ceiling.
[84] Along the bed, we keep the no-slip boundary con-

ditions. In addition, because of the permanent motions of
sedimentary cells on the flat bedrock, a smooth and flat bed
form is never met during the computation. There is always a
small-scale roughness and the direction of the normal to the
surface varies from point to point. As a consequence,
motions and collisions of fluid particles create a boundary
layer across which the fluid velocity gradually increases
(Figure C1).

Appendix D: Coupling Between the Model of
Sediment Transport and the LGCA

[85] In order to take into account the simultaneous
evolution of the topography and the bed shear, there is a
permanent coupling between the model of sediment trans-

Figure C1. Velocity profiles (a) before, (b) on the slope, and (c) downwind of a dune. Note the free slip
boundary condition along the ceiling, the logarithmic velocity profile before the crest and dune (the
dashed line in Figures C1a and C1b), and the reverse flow in the recirculation zone after the dune. (d) All
profiles with velocity streamlines. The unit of Vx is an averaged number of fluid particles per site flying
along the direction of the flow.
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port and the LGCA. In this case, a major difficulty is to deal
with the difference of time scales between the models. Some
simplifications are required, and here we consider a time
iteration scheme which is fully controlled by the model of
sediment transport. In other words, there is no time delay
associated with one motion cycle of fluid particles.
[86] From the initial conditions, the standard procedure is

as follows. First, at t = 0 avalanches may occur to generate
the stable initial bed elevation profile. Then, we stabilize the
flow over this topography. This requires a number of
iteration which is proportional to L, the characteristic length
of the system. From this configuration of the flow and the
spatial distribution of the bed shear stress the model of
sediment transport can start, modifying one by one the
population of active doublets at the end of the successive
time increments (see Appendix B). With a return period Tr,
avalanches may occur and one motion cycle of the lattice
gas model is implemented. Tr is a parameter of the model,
and here we chose Tr = 0.1/L0, a value which is small
compare to the characteristic time of erosion. Thus, the
velocity field and the bed shear stress are regularly recalcu-
lated before they can be used to determine the future
transitions of doublets.
[87] In this procedure, between two motion cycles of fluid

particles the number of transitions in the model of sediment
transport is not constant, fluctuating according to the
topography and the topology of active doublets. More
importantly, the entire configuration of the flow is recalcu-
lated over a time period which is much shorter than the time
required to move one layer of sedimentary cells (i.e., Tr �
1/Le + 1/Lt + 1/Lc). However, since the transitions of
doublets are independent of fluid particles of the lattice
gas model, a cell can undergo a transition from a fluid to a
sedimentary state at sites where fluid particles are present.
Where this happens, we consider that fluid particles are
captured by the sedimentary cells, bouncing back and forth
on the internal boundaries of these cells. When they
undergo a transition from a sedimentary to a fluid state,
fluid particles are released moving along the direction of
their velocity vector at that specific time.
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