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Abstract. Tidal forces acting on the Earth cause deformations and mass redistribution
inside the planet involving surface motions and variation in the gravity field, which may
be observed in geodetic experiments. Because for space geodesy it is now necessary to
achieve the mm level in tidal displacements, we take into account the hydrostatic flat-
tening of the Earth in the computation of the elasto-gravitational deformations. Analyt-
ical solutions are derived for the semi-diurnal tides on a slightly elliptical homogeneous
incompressible elastic model. That simple analytical Earth’s model is not a realistic repre-
sentation of any real planet, but it is useful to understand the physics of the problem and
also to check numerical procedures. We rediscover and discuss the Love’s solutions and
obtain new analytical solutions for the tangential displacement. We extend these analytical
results to some geodetic responses of the Earth to tidal forces such as the perturbation
of the surface gravity field, the tilt and the deviation of the vertical with reference to the
Earth’s axis.
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1. Introduction

Tidal forces acting on the Earth cause deformations and mass redistribu-
tion inside the planet involving surface motions and variation in the gravity
field, which may be observed in geodetic experiments.

The tide is one of the most important external source and consequently
one of the most studied. In 1862, Lord Kelvin made the first calculus of
the elastic deformation of an homogeneous incompressible Earth under the
action of the tidal gravitational potential. Some years latter, Love (1911)
studied a compressible homogeneous Earth’s model and showed that the
tidal effects could be represented by a set of dimensionless numbers, the
so-called Love numbers. Today, body tides effects at and outside the Earth’s
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surface are always modeled in terms of the tidal Love numbers noted k, h,

and l for, respectively, the gravitational field, the radial and tangential dis-
placement. Takeuchi (1950) obtained a first estimation of these Love num-
bers by a numerical integration of the equations using a reference Earth’s
model given by seismologists. These results have then been extended by
Wahr and Bergen (1986) and Dehant (1987) to an anelastic mantle.

The effect of the spheroidal shape of the Earth on the body tides has
been already estimated by several authors (Wahr, 1981; Dehant, 1987, 1991,
1995; Buffett et al., 1993; Wang, 1994; Mathews et al., 1995).

An analytical solution for this effect is only possible for a simple model.
Love (1911) derived analytical solution, using an Eulerian formulation, for
the semi-diurnal tides on a slightly elliptical homogeneous incompressible
elastic model. In this paper, we would like to rediscover the Love’s solu-
tions (in term of surface mass redistribution potential and radial displace-
ment) using a Lagrangian formulation and obtain new analytical solutions
for the tangential displacement. We intend to extend these results to some
geodetic responses of the Earth to tidal forces such as the perturbation of
the surface gravity field (with the associated gravimetric factor), the tilt and
the deviation of the vertical with reference to the Earth’s axis.

That simple Earth’s model is not a realistic representation of any real
planet, but because it allows analytical solutions, it is useful to understand
the physics of the problem, and especially the influence of each geomet-
ric and physical parameter, and also to check the numerical procedure of a
new method developed in a next paper (Métivier et al., 2005), This paper
is organized as follows. In the first part (Section 2), we recall the classical
elasto-gravitational theory for a spheroidal hydrostatic pre-stress planet
using the formalism proposed by Dahlen (1968) (see also Smith, 1974;
Dahlen, 1976). In Section 3, we present the analytical solutions for an
incompressible homogeneous elastic planet submitted to the semi-diurnal
tidal potential and discuss our solutions with respect to the Love’ ones.
We extend these results (in Section 4) to the analytical study of the geo-
detic and gravimetric responses of the Earth to the tides on the spheroidal
deformed surface.

2. Elasto-gravitational Theory for a Spheroidal Hydrostatic Pre-stress
Planet

To describe the motion of slightly elliptical elastic Earth, we use the
formalism proposed by Dahlen and Tromp (1998). The rotating planet is
submitted to luni-solar gravitational forces ρ �f with �f = �∇V , where V is
the luni-solar tidal potential. Under the effects of this cause, the Earth is
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deformed. The state of an internal particle is described by its density ρ,
its displacement �u, its strain tensor

[
εij = 1

2([∂iuj + ∂jui ] )
]
, its stress tensor∑

ij , its potential carried on by the rest of the body � and the tidal poten-
tial V . We note � the centrifugal potential:

� =�o

[
1− 3 cos2 θ −1

2

]
with �o = �2r2

3
, (1)

where � is the uniform angular velocity, r the radius, and θ the colatitude.
The mass and impulsion conservation, and the Poisson equation are writ-
ten:

∂ρ

∂t
+ �∇ ·ρ�v =0,

ρ
d2 �u
dt2 = �∇ ·� +ρ �∇(�+�)+ρ �∇V, (2)

	�=−4πGρ,

where �v is the velocity. In our hypotheses, these are the equations of the
problem. We have to add a rheological law to link the stress tensor to the
strain tensor.

The fundamental assumption in the elasto-gravitational theory is that
the deformations are small in comparison with the reference configuration
in hydrostatic equilibrium. We can thus use a perturbations theory. We
introduce, in a point of the volume, the Eulerian perturbations. We put:

ρ =ρref +ρe
1,

� =�ref +�e
1, (3)

�=�ref +�e
1,

where the subscript ref referred to the reference configuration and the sub-
script 1 to the perturbed state. The velocity �v and the potential V are per-
turbations. In addition, we remain in the frame of a linear theory in term
of �u. Finally, we express the mass conservation from the displacement field.
We thus obtain the following equations:

ρe
1 + �∇ · (ρref �u)=0,

ρref
d2 �u
dt2 = �∇ · (�ref +�e

1)+ (ρref +ρe
1)

�∇(�ref +� +�e
1)+ρref �∇V, (4)

	(�ref +�e
1)=−4πG(ρref +ρe

1).



116 MARIANNE GREFF-LEFFTZ ET AL.

We have to describe the different states appearing in these last equations,
that is to say, the hydrostatic reference state and the elasto-gravitational
perturbed state.

Let us first to recall the solutions for our elliptical hydrostatic reference
model.

2.1. HYDROSTATIC REFERENCE MODEL

We are interested in the spheroidal Earth model which results from the uni-
form angular velocity � of the planet remaining in a state of hydrostatic
equilibrium.

In a state without deformation, called reference state, the planet is ellip-
tical and an internal particle is characterized by a density ρref = ρo + δρo,
a stress �ref = �o + δ�o which is assumed isotropic [�o + δ�o = −(Po +
δPo)I ], a gravitational potential �ref =�o + δ�o and the centrifugal poten-
tial �. Potential, pressure and density are the sum of a radial term and a
zonal degree 2 term. We note Po, ρo, and �o, respectively, the radial part
of the pressure, density and gravitational potential induced by the radial
part of the centrifugal potential �o; and δPo, δρo, and δ�o, respectively, the
zonal degree 2 perturbations of the spherical pressure, density and grav-
itational potential induced by the zonal part of the centrifugal potential.
P 0

2 = 3 cos2 θ−1
2 is the zonal degree two Legendre polynomial.

The mechanical and gravitational equilibrium equations governing the
state of our reference Earth are:

�∇(Po + δPo)= (ρo + δρo) �∇(�o + δ�o +�), (5)

	(�o + δ�o)=−4πG(ρo + δρo).

We may solve first the radial part of the equation and then the zonal
degree 2 part.

For our simple homogeneous incompressible model, there is no density
perturbation δρo =0. Both the potential and the pressure are the sum of a
radial term and a zonal degree two term. We note:

�o +� + δ�o = �̃o(r)+ δ�̃o(r, θ, ϕ) (6)

with �̃o(r) = �o(r) + �o(r) and δ�̃o(r, θ, ϕ) = δ�o(r, θ, ϕ) + �oP
0
2 (θ), i.e.,

taking into account both the mass redistribution potential and the direct
effect of the zonal degree 2 part of the centrifugal potential.
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2.1.1. Spherical reference model

The radial part of the gravitational potential and hydrostatic pressure are
governed by the following equations:

−�∇Po +ρo �∇(�o +�o)=�0 (7)

and the Poisson equation:

	�o =−4πGρo. (8)

For realistic Earth’s model, we usually assume that the solutions of these
equations are known from seismology.

For our incompressible homogeneous model, the solutions are:

�̃o(r)=�o(r)+�o(r)= goa

2

[
3− r2

a2

]
+ �2r2

3
and

(9)

Po(r)= ρogoa

2

[
1− r2

a2

]
− ρo�

2a2

3

[
1− r2

a2

]
,

where a is the Earth’s radius and if we note M the mass of the planet, go =
GM
a2 the surface gravity.

2.1.2. Elliptical Reference Model

Subtracting Equations (7) and (8) from Equations (5), we rediscover that
the zonal degree 2 fluid deformations obey to the Clairaut equation (e.g.,
Jeffreys, 1970), that-is-to-say depend only on the density stratification and
on the angular velocity of the planet �. We note α(r) the hydrostatic flat-
tening within the Earth. We have

δ�̃o(r, θ, ϕ)=− 2
3α(r)g(r)r P 0

2 ,

δPo(r, θ, ϕ)=− 2
3α(r)ρo(r)g(r)r P 0

2 .
(10)

There is a surface degree 2 topography, noted δd, such as: δd =− 2
3α(a)aP 0

2 .

For our incompressible homogeneous model, we have α(r) = 5
4qo with

qo = �2a
go

the geodetical constant.

2.1.3. Remarks

The radial terms �̃o(r),Po(r) and also ρo(r) are related to the theory of
the reference state that-is-to-say to the theory of the interior of the plan-
ets. It is a static theory which takes into account most of the fundamental
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thermodynamical equations, of potentials, of phase changes and of states
equations. It takes also into account the Poisson equation. This theory of
the reference state is, for the Earth, known from seismology. It allows to
have a mean model for the radially stratified Earth. The most classical is
the PREM model derived by Dziewonski and Anderson (1981).

Note that Love (1911), in his analytical calculation, worked with respect
to a non-rotating spherical reference Earth characterized by �o(r),Po(r),
and ρo(r), that is to say, without taking into account the radial part of the
centrifugal potential; he kept simultaneously, in the spheroidal perturbed
state, the radial and the degree 2 term in both the incompressible pressure
and the centrifugal potential.

In our approach, we choose to work with respect to a rotating spher-
ical reference Earth which takes into account both the radial part of the
centrifugal potential and the induced radial deformation, that-is-to-say a
planet characterized by �̃o(r),Po(r), and ρo(r). This will change signifi-
cantly the Love numbers perturbations and it will be taken into account
when we will recombine the different perturbed states to build the final
solution on the deformed surface of the planet.

Now, we will solve the elasto-gravitational theory for a spheroidal
hydrostatic planet in two steps: first, we will compute the deformations �u
and �e

1 with respect to a spherical reference Earth’s model, and then the
perturbations of these deformations ∂ �u and ∂�e

1 due to the elliptical shape
of the reference model (for a review of this perturbation theory, see Dahlen
and Tromp, 1998).

Let us first recall the solutions for a spherical Earth.

2.2. ELASTOGRAVITATIONAL THEORY FOR A SPHERICAL EARTH

The equations governing the hydrostatic equilibrium of the spherical refer-
ence configuration are given by Equations (7–9). Taking into account these
equations in the set of the elasto-gravitational equations (4), we have:

ρe
1 + �∇ · (ρo�u)=0,

ρo
d2 �u
dt2 = �∇ ·�e

1 +ρo �∇�e
1 +ρe

1
�∇(�o +�o)+ρo �∇V, (11)

	�e
1 =−4πGρe

1.

To obtain the whole set of equations, we need to add the rheological law
linking �e

1 to εij . This relation is the one of an elastic body, but we have
to careful if the reference state is pre-stressed. We can show (Dahlen and
Tromp, 1998) that if the pre-stress is a pressure (no deviatoric part), then
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the best parametrization of the perturbations of the stress tensor is the

Lagrangian parametrization. We thus introduce the tensor �l
1 and the rhe-

ological elastic law for an isotropic medium is, noting K the incompress-
ibility and µ the rigidity:

�l
1ij = (

K − 2
3µ

)
[ �∇ · �u]δij +2µεij (12)

with the classical relation between the Lagrangian and Eulerian perturba-
tion:

�l
1 =�e

1 + �u · �∇�o. (13)

The conservation of impulsion may be consequently written:

ρo
d2 �u
dt2

= �∇ ·
[(

K − 2
3µ

)
[∇ · �u]I +2µε

]
+ �∇[�u · �∇Po]

+ρo �∇�e
1 +ρe

1
�∇(�o +�o)+ρo �∇V, (14)

K and µ are related to the reference model.
The solution of the obtained set of equations is complex but, because

the sphericity of the reference model, it is judicious to use spherical coor-
dinates and to expand the parameters on a basis of spherical functions. Let
r, θ , and ϕ the spherical coordinates in a frame centered to the mass center
of the reference model; r is the radius, θ the colatitude, and ϕ the longi-
tude. We use spherical harmonics Ym

n (θ, ϕ) (Heiskanen and Moritz, 1967):

• For the displacement �u:

�u(r, θ, ϕ)=
∞∑

n=0

n∑

m=−n

[y1nY
m
n �er +y3nr �∇Ym

n +y7n
�∇ ∧ (�rYm

n )], (15)

y1n(r) is the radial part of �u, y3n(r) the spheroidal part and y7n(r) the
toroidal part.
These coefficients are the spectral components of �u.

• For the Lagrangian traction �T l = �no ·�l
1, where �no is the outer normal to

the spherical reference surface (�no = �er).

�T l =
∞∑

n=0

n∑

m=−n

y2n(r)Y
m
n �er + ry4n(r) �∇Ym

n +y8n(r) �∇ ∧ (�rYm
n ).

• For the potential

V +�e
1 =

∞∑

n=0

n∑

m=−n

y5n(r)Y
m
n with V =

∞∑

n=0

n∑

m=−n

V m
n

rn

an
Ym

n .
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• For the Lagrangian attraction, we introduce:

y6n = dy5n

dr
−4πGρoy1n(r).

Using these notations, the set of Equations (4) may be written as a differ-
ential system with 8 equations of first-order (the indicial n is omitted for
simplicity). In the frequency (noted ω) domain, we have (Alterman et al.,
1959), where the · denotes the radial derivative:

ẏ1 =−2(K − 2
3µ)

(K + 4
3µ)

y1

r
+ 1

(K + 4
3µ)

y2 + n(n+1)(K − 2
3µ)

(K + 4
3µ)

y3

r
,

ẏ2 =
[

−4ρog + 2
3
ρo�

2r −ω2ρor + 12µK

(K + 4
3µ)r

]
y1

r
− 4µ

(K + 4
3µ)

y2

r

+n(n+1)

[

ρog − 6µK

(K + 4
3µ)r

]
y3

r
+ n(n+1)y4

r
−ρoy6,

ẏ3 =−y1

r
+ y3

r
+ y4

µ
,

ẏ4 =
[

ρog − 2
3
ρo�

2r − 2µ(3K)

(K + 4
3µ)r

]
y1

r

+
{

−ω2ρor + 2µ[(K − 2
3µ)(2n2 +2n−1)+2µ(n2 +n−1)]

(K + 4
3µ)r

}
y3

r

−(K − 2
3µ)

(K + 4
3µ)

y2

r
− 3y4

r
−ρo

y5

r
,

ẏ5 =4πGρoy1 +y6,

ẏ6 =−4πGρon(n+1)
y3

r
+ n(n+1)

r

y5

r
− 2y6

r
,

ẏ7 = y7

r
+ y8

µ
,

ẏ8 =
[
−ω2ρor + µ(n2 +n−2)

r

]
y7

r
− 3y8

r
(16)

The density ρo(r), the rigidity µ(r) and the incompressibility K(r) depend
on the radial stratification of the reference Earth’s model. g(r) is the grav-
ity. For a homogeneous reference sphere, we have g(r) = go

r
a
, where go is

the surface gravity. Note that in the second and fourth equation, there is
a term related to the radial part of the centrifugal potential (i.e., propor-
tional to �2).
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This system describes the elasto-gravitational behavior within the elastic
parts of a planet. It permits also the study of the seismic modes. For the
studies related to deformations with periods large in comparison with one
hour, we classically assume that ω=0 in this system: we talk then of static
deformations.

To solve the elasto-gravitational equations, we have to add boundary
conditions:

• The displacement and the attraction have to vanish at the center of mass
(r =0).

• At each internal interface of the reference spherical model, the yi are
continuous.

• At the surface of the reference spherical Earth’s model (r =a), we have:
[
∂�e

1

∂r
+4πGρour

]a+

a−
=0 or y6(a)+ n+1

a
y5(a)= 2n+1

a
Vn. (17)

• In absence of external pressure or traction acting on this Earth surface,
the Lagrangian traction has to vanish at r =a:

�T l(a)=�0. (18)

For an incompressible homogeneous Earth model, the static solutions may
be written:

y1(r)=C3r
n+1 +C4r

n−1,

y2(r)=2µ

[
n2 −n−3

n
C3r

n + (n−1)C4r
n−2

]

+4
3
πGρ2

o

[
C3r

n+2 +C4r
n
](

1− 2
3
qo

)
−ρoC5r

n,

y3(r)= n+3
n(n+1)

C3r
n+1 + C4

n
rn−1,

y4(r)=2µ

[
n+2
n+1

C3r
n + n−1

n
C4r

n−2
]

,

y5(r)=C5r
n, (19)

y6(r)=nC5r
n−1 −4πGρo[C3r

n+1 +C4r
n−1].

Because of the static assumption (i.e., ω = 0), the solutions only contain
terms in positive powers of the radial coordinate instead of terms of spher-
ical Bessel functions (Love, 1911). Note that in the y2 propagator, there is
a term in qo the geodetical constant defined in Section 2.1.2, i.e., related to
the radial part of the centrifugal potential.
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The constants are determined from the boundary condition which may
be written for a degree n volumic potential Vn:

y2(a)=0,

y4(a)=0, (20)

y6(a)+ n+1
a

y5(a)= 2n+1
a

Vn.

For n = 1, we have to modify these boundary conditions in order to take
into account the conservation of the center of mass (y5(a)=0). We do not
take into account this particular case in this paper where we are interested
in the degree 2 tidal potential.

We introduce δXn = qo
3

2n+1
n−1

1
1+µ

, where qo is the geodetical constant and

µ̄n = 2n2+4n+3
n

µ

ρogoa
; the constants are:

C3 =−1
2

(n+1)

µn +1
1
an

Vn

goa
[1+ δXn],

C4 = n(n+2)

2(n−1)(1+µ)

1
an−2

Vn

goa
[1+ δXn], (21)

C5 =
[

1+ 3
2(n−1)(1+µ)

(1+ δXn)

]
1
an

Vn.

We introduce the classical tidal Love numbers (Love, 1911) defined by:

y1(a)=hn

Vn

go
; y3(a)= ln

Vn

go
; y5(a)= (1+kn)Vn.

For a homogeneous incompressible Earth model, these numbers may be
analytically computed:

kn = 3
2(n−1)

1
1+ µ̄n

[1+ δXn],

hn = 2n+1
2(n−1)

1
1+ µ̄n

[1+ δXn],

ln = 3
2n(n−1)

1
1+µn

[1+ δXn].

Taking qo = 0, we rediscover the classical Love solutions, which was com-
puted for a non rotating spherical Earth.

For a degree 2 tidal potential we note, for simplicity, µ2 = µ and we
have:
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k2 = 3
2

1
1+ µ̄

[
1+ 5

3
qo

1+ µ̄

]
; h2 = 5

2
1

1+ µ̄

[
1+ 5

3
qo

1+ µ̄

]
;

l2 = 3
4

1
1+ µ̄

[
1+ 5

3
qo

1+ µ̄

]
.

Taking a = 6,371,000 m, ρo = 5520 kg m−3,µ = 0.115 × 1012 Pa, and
qo =1/289.9, we obtain:

k2 =0.360932; h2 =0.601553; l2 =0.180466.

Let VM2 be the degree 2 tidal potential induced by the semi-diurnal lunar
wave M2:

VM2 =Vo 3 sin2
θ cos(σ t +2ϕ)

r2

a2

We find the classical solutions for an incompressible homogeneous Earth
model:

ur(r, θ, ϕ)= 3
2

sin2
θ
Vo

go

1
1+ µ̄

cos(σ t +2ϕ)

[
−3

r3

a3
+8

r

a

]
(1+ δX2),

uθ (r, θ, ϕ)= 3
2

sin θ cos θ
Vo

go

1
1+ µ̄

cos(σ t +2ϕ)

[
−5

r3

a3
+8

r

a

]
(1+ δX2),

uϕ(r, θ, ϕ)=−3
2

sin θ
Vo

go

1
1+ µ̄

sin(σ t +2ϕ)

[
−5

r3

a3
+8

r

a

]
(1+ δX2),

�e
1(r, θ, ϕ)= 9

2
sin2

θVo
1

1+ µ̄
cos(σ t +2ϕ)

r2

a2
(1+ δX2).

(22)

We plot, in Figure 1, the surface radial and tangential displacement, at t =
0, induced by the tidal wave M2, and the perturbed geoid 1

go
[�e

1 +VM2 ]r=a

in millimeter.
Neglecting the effects of the radial centrifugal potential (qo � 0), for

simplicity, the Cauchy stress tensor becomes:

�l
rr =3 sin2

θ
µVo

goa(1+µ̄)
cos(σ t +2ϕ)

[
8−9 r2

a2

]
−P1,

�l
rθ =24 sin θ cos θ

µVo
goa(1+µ̄)

cos(σ t +2ϕ)
[
1− r2

a2

]
,

�l
rϕ =−24 sin θ

µVo
goa(1+µ̄)

sin(σ t +2ϕ)
[
1− r2

a2

]
,

�l
θθ =3 µVo

goa(1+µ̄)
cos(σ t +2ϕ)

[
8 cos2 θ + r2

a2 (2−7 cos2 θ)
]
−P1,

�l
ϕϕ =3 µVo

goa(1+µ̄)
cos(σ t +2ϕ)

[
−8+ r2

a2 (7−2 cos2 θ)
]
−P1,

�l
θϕ =3 µVo

goa(1+µ̄)
sin(σ t +2ϕ) cos θ

[
5 r2

a2 −8
]
,

where P1 is a pressure appearing in this simple incompressible case and
corresponding to K div�u



124 MARIANNE GREFF-LEFFTZ ET AL.

P1(r, θ, ϕ)=−3
2

sin2
θ

ρoVo

1+ µ̄
cos(σ t +2ϕ)

r2

a2

[
−3

r2

a2
+3+ 4

19
µ̄

]
.

The order of magnitude of these stresses is about some thousand Pascal.

Figure 1. Spherical homogeneous incompressible Earth model with a radius a = 6371 km,
a density ρo = 5520 kg/m3 and a rigidity µ = 0.115 × 1012 Pa: (a) surface displacement in
millimeter: the contour interval for the radial displacement is 50 mm, and the scale of the
tangential displacement vector is 1 cm for 200 mm; (b) surface geoid in mm: the contour
interval is 100 mm.
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2.3. ELASTO-GRAVITATIONAL THEORY FOR A SPHEROIDAL HYDROSTATIC

PLANET

In this part, we investigate the effects of the spheroidal shape of the Earth
on the body tides. The reference ellipsoidal hydrostatic model is described
as a perturbation of the spherical reference state [see Equation (5)].

The elasto-gravitational deformations, induced by a tidal potential V when
the reference model is assumed to be ellipsoidal, may be written as the sum of
the spherical elasto-gravitational deformations plus a perturbation.

�l
1 + δ�l

1, �u+ �δu, �e
1 + δ�e

1.

Taking into account the equations governing the reference state (5), the
equilibrium and Poisson equations become:

(ρo + δρo)
d2

(�u+ �δu)

dt2
= div

(
�l

1 + δ�l
1 + [(�u+ �δu) ·∇](Po + δPo)I

)

+(ρo + δρo) �∇(�e
1 +V + δ�e

1)

−div[(ρo + δρo)(�u+ �δu)] �∇(�̃o + δ�̃o),

	[�e
1 + δ�e

1]=4πGdiv[(ρo + δρo)(�u+ �δu)]. (23)

Subtracting the equilibrium and Poisson equations for a spherical Earth
(11) and neglecting the second order terms (such as δρo �δu . . . ), we obtain:

δρo
d2 �u
dt2

+ρo
d2 �δu
dt2

= div
[
δ�l

1 + (�u ·∇)δPoI + ( �δu ·∇)PoI

]

+δρo �∇(�e
1 +V )+ρo �∇δ�e

1

−div[ρo �δu+ δρo�u] �∇�̃o −div(ρo�u) �∇δ�̃o,

	δ�e
1 =4πGdiv[ρo �δu+ δρo�u]. (24)

The perturbed Cauchy stress tensor δ�l
1 may be written (for more details,

see Dahlen and Tromp, 1998, p. 79):

(δ�l
1)ij =�ijkl(δul),k + δ�ijkl(ul),k (25)

with

�ijkl = (K − 2
3
µ)δij δkl +µ(δikδjl + δilδjk)

and

δ�ijkl = (δK − 2
3
δµ)δij δkl + δµ[δikδjl + δilδjk],

K(r) and µ(r) are respectively the radial part of the incompressibility and
of the shear modulus, and δK and δµ the lateral variations.
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Note that the set of Equation (24) may be written under the following
form:

ρo
d2 �δu
dt2

−div
[
�: ( �∇ �δu)+ ( �δu ·∇)PoI

]
−ρo �∇δ�e

1 +div(ρo �δu) �∇�̃o = �F1,

(26)

	δ�e
1 −4πGdiv(ρo �δu)= �F2

with

�F1 =−δρo
d2 �u
dt2

+div
[(

δ�
)

:
(

�∇�u
)

+ (�u ·∇)δPoI
]
+ δρo �∇(�e

1 +V )

−div[δρo�u] �∇�̃o −div(ρo�u) �∇δ�̃o,

�F2 =4πGdiv(δρo�u).

The elasto-gravitational operator applied to �δu and to δ�e
1 is the same as

the one applied to �u and �e
1 in Equation (11) relative to a spherical Earth.

The boundary conditions are unchanged, that-is-to-say the displace-
ment, the tractions, the potential and the gravity are continuous within the
planet and at the Earth’s deformed surface. Nevertheless, as they will be
written at the interfaces of the reference radial sphere (in order to subtract
the boundary conditions associated with �u and �e

1, it is necessary to take
into account the topography at each interface (noted δd at the outer sur-
face) and to introduce a non-radial normal �n′

o = �no − �∇ �∇Sδd, where �∇S is
the tangential gradient and �no = �er . Dahlen and Tromp (1998) showed that
the boundary conditions at r = a and at each solid–solid interface of the
spherical reference model are:

•
[

�δu
]+

−
= [−δd∂�no �u]+

− ,

•
[
�no · δ�l

1

]+

−
=

[
−δd �no · ∂�noδ�

l
1 + �∇Sδd ·�l

1

]+

−
,

• [
δφe

1

]+
− = [−δd ∂�no�

e
1

]+
−

•
[
�no · �δξ

]+

−
=

[
−δd �no · ∂�no

�ξ + �∇Sδd · �ξ
]+

−

with

�ξ =−�∇�e
1 +4πGρo�u and

�δξ =−�∇δ�e
1 +4πG(δρo�u+ρo �δu) (27)
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3. Analytical Solutions for an Elastic Incompressible Homogeneous
Spheroidal Earth’s Model

3.1. EQUATIONS AND PROPAGATORS

We intend to solve the Equation (26). The unknowns are �δu and δ�e
1. For

a spheroidal homogeneous hydrostatic reference Earth, we have δρo = 0,
δK = δµ=0 and consequently �F1 and �F2 may be simply written:

�F1 =div
[
+(�u ·∇)(δPoI )

]
F2 =0. (28)

We introduce a function X(r, θ, ϕ) = (
ur∂r + 1

r
uθ∂θ + 1

r sin θ
uϕ∂ϕ

)
δPo. We

expand X into spherical harmonics

X(r, θ, ϕ)=
∞∑

n=0

n∑

m=−n

xm
n (r)Ym

n (θ, ϕ).

We note for the spherical functions: Ymc
n (θ, ϕ) = P m

n (cos θ) cosmϕ

et Yms
n (θ, ϕ)=P m

n (cos θ) sin mϕ, where P m
n are the non-normalized Legendre

polynomials.

Y 2c
2 =3 sin2

(θ) cos 2ϕ, Y 2c
4 = 15

2 sin2
(θ)[7 cos2(θ)−1] cos 2ϕ,

Y 2s
2 =3 sin2

(θ) sin 2ϕ, Y 2s
4 = 15

2 sin2
(θ)[7 cos2(θ)−1] sin 2ϕ.

(29)

We find:

X(r, θ, ϕ)=x2(r)
[
cosσ tY 2c

2 − sin σ tY 2s
2

]+x4(r)
[
cosσ tY 2c

4 − sin σ tY 2s
4

]

with

x2(r)=− 1
21

αρoVo

1+ µ̄

r2

a2

[
27

r2

a2
−56

]
,

x4(r)=− 4
35

αρoVo

1+ µ̄

r4

a4
.

(30)

Similarly to the spherical case, we expand the perturbations in spherical
harmonics:

• For the perturbation of the displacement:

�δu=
∞∑

n=0

n∑

m=−n

δym
1n(r)Y

m
n (θ, ϕ)

�r
r

+rδym
3n(r)

�∇Ym
n (θ, ϕ)+ δym

7n(r)
�∇ ∧ �rYm

n (θ, ϕ). (31)
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• For the perturbation of the Lagrangian tractions:

�no · δ�l
1 =

∞∑

n=0

n∑

m=−n

δym
2n(r)Y

m
n (θ, ϕ)

�r
r

+ rδym
4n(r)

�∇Ym
n (θ, ϕ)

+δym
8n(r)

�∇ ∧ �rYm
n (θ, ϕ). (32)

• For the perturbation of the potential:

δ�e
1 =

∞∑

n=0

n∑

m=−n

δym
5n(r)Y

m
n (θ, ϕ). (33)

• For the perturbation of the gravity:

δy6 = dδy5

dr
−4πGρoδy1(r). (34)

The perturbed equations of the elasto-gravity may be written as a first-order
differential system:

d
dr

δyi(r)=Aij (r)δyj (r)+fi(r) pour (i, j)=1.8, (35)

where Aij (r) is the matrix of the spherical yi system (16). It depends on
the radial density, shear modulus and compressibility.

fi(r) is relative to the vectors �F1 and �F2. We have: �f = [0, ∂rx
m
n (r),0, xm

n

(r)/r,0,0,0,0]. For an incompressible homogeneous Earth, the solutions of
the perturbed system (35) may be written, where we omit, for simplicity,
the degree n and order m for each δyi and each constant.

δy1 = δC3 rn+1 + δC4 rn−1,

δy2 =2µ

[
n2 −n−3

n
δC3r

n + (n−1)δC4r
n−2

]

+ρogo

a

[
δC3r

n+2 + δC4r
n
]−ρoδC5r

n −xm
n (r),

δy3 = n+3
n(n+1)

δC3 rn+1 + δC4

n
rn−1,

δy4 =2µ

[
n+2
n+1

δC3r
n + n−1

n
δC4r

n−2
]

,

δy5 = δC5 rn,

δy6 =nδC5r
n−1 −4πGρo

[
δC3r

n+1 + δC4r
n−1] ,

δy7 = δC7r
n,

δy8 =µ(n−1)δC7r
(n−1), (36)
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where the terms in qoδC3 and qoδC4 have been neglected because they are
of second-order of our approximation.

Note that for our simple homogeneous incompressible model, because
�F1 is simply a gradient, the xm

n term only appears in the solution δy2 but
vanishes in the solution δy4.

The constants δC3, δC4, δC5, and δC7 have to be determined from the
boundary conditions (27). The details of the computation of each degree n

and order m constants are given in Appendix A.

3.2. SOLUTIONS

Knowing the constants, we know the perturbations of the displacement, of
the gravitational potential and of the stress tensor within the entire planet.

At the surface of the reference Earth’s model (r = a), we introduce
perturbations of the Love numbers such as:

δ�u= Vo

go
{(δh2P

2
2 + δh4P

2
4 ) cos(σ t +2ϕ)�er

+�∇[(δl2P 2
2 + δl4P

2
4 ) cos(σ t +2ϕ)]

(37)
+�er ∧ �∇[δl3P 2

3 sin(σ t +2ϕ)]},
δ�e

1 =Vo[(δk2P
2
2 + δk4P

2
4 ) cos(σ t +2ϕ)]

with

δh2 = 1
399α

(653µ̄+1349)

(1+µ̄)2 , δh4 =− 4
35α

(68µ̄+95)

(1+µ̄)(51µ̄+38)
,

δl2 = 1
3990α

(3365µ̄+5453)

(1+µ̄)2 , δl4 =− 1
315α

(612µ̄+589)

(1+µ̄)(51µ̄+38)
, δl3 = 1

15α
1

(1+µ̄)
,

δk2 = 2
655α

(127µ̄+475)

(1+µ̄)2 , δk4 = 34
15α

µ̄

(1+µ̄)(51µ̄+38)
.

(38)

For our homogeneous incompressible Earth with a radius a = 6371 km, a
density ρo = 5520 kg/m3, a rigidity µ = 0.115 × 1012 Pa and an hydrostatic
flattening α = 5

4qo = 1
232 , we find:

δh2 =0.002130, δh4 =−0.000184,

δl2 =0.001004, δl4 =−0.000042, δl3 =0.000069,

δk2 =0.000656, δk4 =0.000037.

(39)

The perturbation is of about 10−3 for the degree 2, and about 10−4 for the
degree 4. The order of magnitude of the radial and tangential component
of the perturbation δ�u of the displacement as well as the perturbed poten-
tial δ�e

1(a)/go is the millimeter and is consequently significant, because it is
well known that for space geodesy, it is now necessary to achieve the mm
level in the tidal displacements.
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3.3. COMPARISON WITH THE LOVE’S SOLUTIONS

Our results for δh4 and δk4 are identical to those obtained by Love (1911)
and corrected by Wang (1994). On the contrary our results for the degree 2
perturbations differ from the Love solutions. This is because Love started
with a reference model which did not take into account the radial part
of the centrifugal potential (and the associated radial part of the pressure
given in Equation (9)). Consequently in his δPo he had a radial term:

δPo =−2
3
α ρogoa

r2

a2
P 0

2 − ρogoa
qo

3

(
1− r2

a2

)
.

In our approach, this term only changes the right-hand side of Equation (26)
and thus appears in the X(r, θ, ϕ) function. If we use the Love’s hypothesis,
we will obtain, where the superscript L is related to the Love’s solutions:

xL
2 (r)=− 1

35
αρoVo

1+ µ̄

r2

a2

[
73

r2

a2
−168

]
(40)

the x4 coefficient is unchanged. The right-hand side of the boundary con-
ditions in δy2 (Equation (A14) in Appendix A) will also be changed:

−ρoa
2 (

δCc
5

)2
2 + ρogoa

19

[
(19−2µ̄)a2 (

δCc
3

)2
2 + (19+4µ̄)

(
δCc

4

)2
2

]

= 1
399

αρoVo

1+ µ̄
(128µ̄+1311) cos(σ t),

(41)
−ρoa

2 (
δCs

5

)2
2 + ρogoa

19

[
(19−2µ̄)a2 (

δCs
3

)2
2 + (19+4µ̄)

(
δCs

4

)2
2

]

=− 1
399

αρoVo

1+ µ̄
(128µ̄+1311) sin(σ t).

This will change the constants and finally the perturbations of the Love
numbers will be:

δhL
2 = 1

399
α

(653µ̄+2679)

(1+ µ̄)2
=0.002953,

δlL2 = 1
3990

α
(3365µ̄+9443)

(1+ µ̄)2
=0.001251, (42)

δkL
2 = 2

665
α

(127µ̄+1140)

(1+ µ̄)2
=0.001151.

Note that the discrepancy between δkL
2 and δk2 is significant (about a fac-

tor 2). Consequently, it will be very important when we compare the Love
numbers perturbations coming from different studies to be careful on the
initial hypothesis concerning the reference model. This remark is also valid



ANALYTICAL SOLUTIONS OF LOVE NUMBERS 131

when we combine the different states of perturbations of our approach
in order to compute some surface quantities, such as the gravity, on the
deformed surface.

It is easy to relate our perturbed Love numbers to the ones computed
by Love from:

δkL
2 = δk2 + 3

2
1

1+ µ̄
δX2,

δhL
2 = δh2 + 5

2
1

1+ µ̄
δX2, (43)

δlL2 = δl2 + 3
4

1
1+ µ̄

δX2.

4. Geodetic and Gravimetric Responses of the Earth to the Tides
on the Spheroidal Deformed Surface

We intend to extend these results to some geodetic responses of the Earth
to tidal forces such as the geoid and the topography on the deformed sur-
face, the perturbation of the surface gravity field (with the associated gravi-
metric factor), the tilt and the deviation of the vertical with reference to
the Earth’s axis (for a review of these measurements of the Earth’s tides,
see Melchior, 1966).

The difficulty of defining the Love numbers or the tidal gravimetric fac-
tor for an ellipsoidal Earth has been pointed out because it is no more pos-
sible to define the Earth’s response with only one parameter as it was the
case for a spherical Earth. It is particularly the case for tilt for which there
must be different Love numbers in different directions.

4.1. OUTWARD NORMALS

Let �nt be the outward normal of the surface topography and �ng the out-
ward normal to the geoid. In our perturbation theory, the terms in δ�̃o�

e
1

have the same order of magnitude that terms in δ�e
1. Consequently, to

compute the normal of a given surface, we have to keep non linear terms.
If we note r(θ, ϕ)=a[1+x(θ, ϕ)] with x(θ, ϕ)�1, a given surface, the outer
normal will be, in the second-order of approximation:

�n= �er

[
1− 1

2
(∂θx(θ, ϕ))2 − 1

2 sin2
θ

(
∂ϕx(θ, ϕ)

)2
]

−∂θx(θ, ϕ)[1−x(θ, ϕ)]�eθ − 1
sin θ

∂ϕx(θ, ϕ)[1−x(θ, ϕ)]�eϕ. (44)
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For the geoid, we have:

x(θ, ϕ)=
[

δ�̃o +�e
1 +V2 + δ�e

1 + δd ∂r(�
e
1 +V2)

goa

]

r=a

and consequently, for the normal:

�ng = �er

[
1− �∇S �e

1 +V2

go
· �∇S δ�o

go

]

r=a

− 1
go

�∇S [δ�̃o+�e
1 +V2 + δ�e

1 + δd[∂r(�
e
1 +V2)]− (�e

1 +V2)
δ�̃o

goa
]r=a

(45)

For the surface topography, we have:

x(θ, ϕ)=
[
δd +ur + δur + δd ∂rur

a

]

r=a

and consequently, for the normal:

�nt = �er [1− �∇Sur · �∇Sδd]r=a − �∇S

[
δd +ur + δur + δd[∂rur ]−ur

δd

a

]

r=a

.

(46)

4.2. SURFACE DISPLACEMENT AND GEOID ON THE DEFORMED

ELLIPSOIDAL OUTER SURFACE

We can define Love numbers related to the vertical surface displacement
and to the tangential displacement on the ellipsoid. We first introduce a
basis of vectors related to the ellipsoid:

�En = �er − �∇Sδd,

�ES = �eθ + ∂θ

δd

a
�er, (47)

�EE = �eϕ + 1
sin θ

∂ϕ

δd

a
�er .

These vectors are normalized and orthogonal (in the first-order in δd
a

).
Note that for a axi-symmetric ellipsoid, ∂ϕ

δd
a

=0 and consequently �EE = �eϕ

is the east direction.
At the order of our approximation, the vertical displacement may be

written:
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un =
[
�er − �∇Sδd

]
·
[
�u+ �δu+ (δd�er · �∇)�u

]

= Vo

go

[
(h2 +	ho)P

2
2 +	h+P 2

4

]
cos(σ t +2ϕ) (48)

with the Love numbers:

h2 +	ho =h2 + δh2 − 11
21

α
1

1+µ
=0.603140

�h+ = δh4 − 1
7
α

1
1+µ

=−0.000332.

The tangential displacement on the ellipsoid is:

�uH = �u+ �δu+ δd∂r �u−un
�En =uHS

�ES +uHE
�EE (49)

with

uHS =uθ + δuθ + δd∂ruθ + ∂θ

δd

a
ur, (50)

uHE =uϕ + δuϕ + δd∂ruϕ + 1
sin θ

∂ϕ

δd

a
ur .

We introduce tangential Love numbers such as �uH may be written in the
ellipsoidal vectors basis:

�uH = Vo

go

{
�∇S

[(
(l2 +	lo)P

2
2 +	l+P 2

4

)
cos(σ t +2ϕ)

]

+ �er ∧ �∇S
[�l∗P 2

3 sin(σ t +2ϕ)
]}

(51)

with

l2 +�lo = l2 + δl2 + 2
21

αl2 = l2 + 1
1995

α
(1825µ̄+2869)

(1+ µ̄)2
=0.181544,

�l+ = δl4 − 1
35

αl2 =− 1
1260

α
(3825µ̄+3382)

(1+ µ̄)(51µ̄+38)
=−0.000064, (52)

�l∗ = δl3 − 1
15

α(2h2 − l2)=−13
60

α
1

(1+ µ̄)
=−0.000224.

We plot in Figure 2a the perturbation of vertical surface displacement (i.e.
un − ur(a) and of the tangential surface displacement (i.e., [uHS − uθ ] �ES +
[uHE −uϕ] �EE), in millimeter.

Similarly, we introduce Love numbers related to the geoid on the
deformed ellipsoidal outer surface:
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1
go

[
�e

1 +V2 + δ�e
1 + δd ∂r(�

e
1 +V2)

]
r=a

= Vo

go

[
(1+k2 +	ko)P

2
2 +	k+P 2

4

]
cos(σ t +2ϕ) (53)

Figure 2. (a) Perturbation of the displacement on the deformed outer ellipsoidal surface:
the contour interval for the vertical displacement un −ur(a) is 0.1 mm, and the scale for
the tangential vector is 1 cm for 1 mm. (b) Perturbation of the geoid on the deformed
outer ellipsoidal surface: the contour interval is 0.2 mm.
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with

k2 +	ko =k2 + δk2 + 8
21

α(1+k2)=0.363824,

�k+ = δk4 − 4
35

α(1+k2)=−0.000633.

We plot in Figure 2b the perturbed geoid on the outer surface
1
go

[
δ�e

1 + δd ∂r(�
e
1 +V2)

]
r=a

, in millimeter.

4.3. SURFACE GRAVITY PERTURBATION

In this part, we are interested in the variations of the intensity of gravity
which can be carried out with the help of gravimeters.

The attraction on the ellipsoidal deformed outer surface is:

�A= �∇
[
�̃o + δ�̃o +�e

1 +V2 + δ�e
1

]

r=a

+
[
(δd�er + �u+ δd ∂rur �er + �δu) · �∇

]
�∇
[
�̃o + δ�̃o +�e

1 +V2 + δ�e
1

]

r=a
.

(54)

In our order of approximation, we have:

�A= �∇
(
�̃o + δ�̃o

)
+ δd ∂r

�∇(�̃o)+ �∇(�e
1 +V2)+ (�u · �∇) �∇�̃o + �∇δ�e

1

+( �δu · �∇) �∇�̃o + (�u · �∇) �∇δ�̃o + δd ∂r
�∇(�e

1 +V2)+ ∂rurδd ∂r
�∇�̃o.

(55)

The gravity along the vertical at the station is g = �ng. �A. We note g =go +
δgo +g1 + δg1, with

go + δgo = ∂r

(
�̃o + δ�̃o

)
+ δd ∂2

r �̃o,

g1 = ∂r

(
�e

1 +V2
)+

(
�u · �∇

)
∂r�̃o,

δg1 = ∂rδ�
e
1 +

(
�δu · �∇

)
∂r�̃o +

(
�u · �∇

)
∂rδ�̃o + δd ∂2

r

(
�e

1 +V2
)

+∂rurδd ∂2
r �̃o − �∇S

(
�e

1 +V2
) · �∇Sδd. (56)

We plot in Figure 3 the perturbation of the gravity induced by the M2 tidal
wave on the ellipsoidal deformed outer surface: g1 in Figure 3a and δg1 in
Figure 3b. Note that there is a significant degree 4 order 2 component with
an amplitude of about 200 nanogals. This perturbation should be detect-
able with the use of very accurate superconducting gravimeters when the
oceanic effects are correctly modeled.
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Figure 3. Perturbation of the gravity on the deformed outer ellipsoidal surface: g1 on the
top and δg1 on the bottom.

Using the definition proposed by Wahr (1981) we define the gravimet-
ric factor as the transfer function between the body tide signal measured
along the vertical at the station by a gravimeter and the amplitude of the
radial derivative of the tidal potential. We introduce the classical degree 2
gravimetric factor δ2 such as:

g1 = 2Vo

a
δ2P

2
2 cos(σ t +2ϕ). (57)
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Because �̃o is the sum of the spherical gravitational potential and of the
radial part of the centrifugal potential, we have:

∂2
r (�̃o)= 2g(r)

r
−4πGρo + 2

3
�2 (58)

and consequently, we have

δ2 =1+h2

(
1+ m

3

)
− 3

2
k2 =1+ 1

4
1

(1+ µ̄)
+ α

3
3+2µ̄

(1+ µ̄)2
. (59)

We define perturbations of this gravimetric factor such as:

δg1(θ, ϕ)= 2Vo

a
cos(σ t +2ϕ)

[
δδ2P

2
2 + δδ4P

2
4

]

with, for our homogeneous incompressible Earth model:

δδ2 = α

3990
1805+729µ̄−380µ̄2

(1+ µ̄)2
, δδ4 =− α

210
2166+4037µ̄+1836µ̄2

(1+ µ̄)(51µ̄+38)
.

Our result for δδ4 is identical to the one obtained from Equation (9)
of Wang (1994) from the Eulerian potential in free space. For δδ2, there
are discrepancies due to the difference in the initial spherical reference
model (with or without the radial pressure and centrifugal potential). But
our total gravimetric factor(δ2 + δδ2) is equal to the one obtained using
Equation (8) of Wang (1994) paper:

δ2 + δδ2 =1+ 1
4

1
(1+ µ̄)

+ α

3990
5795+3389µ̄−380µ̄2

(1+ µ̄)2

With the numerical values given in Section 3.2, we obtain:

δ2 + δδ2 =1.060175, δδ4 =−0.000824.

Note that these coefficients are related to non-normalized Legendre poly-
nomials.

If the planet is rigid, our gravimetric factors will become:

δ2 =1, δδ2 =− 2
21

α =−0.0004105, δδ4 =− 6
35

α =−0.0007389.

Note that the gravimetric factor is sometimes defined as the transfer func-
tion between the body tide signal measured along the vertical at the sta-
tion by a gravimeter and the amplitude of the gradient of the external tidal
potential along the perpendicular to the reference ellipsoid (e.g., Dehant
et al., 1999).
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We can also compute the components of the attraction in the basis of
vectors related to the ellipsoid (defined in 47). We obtain, for the normal
component: �A · �En =g, where g is the gravity defined in Equation (56). For
the horizontal component (i.e., the deviation of the vertical), noting AS =
�A · �ES and AE = �A · �EE, we have:

AS
�ES +AE

�EE = �∇H

[
�e

1 +V2 + δ�e
1 + δd∂r(�

e
1 +V2)

]
(60)

that-is-to-say, the horizontal attraction is equal to the horizontal gradient
of the perturbed geoid.

4.4. PERTURBATION OF SOME GEODETIC DEFORMATIONS

4.4.1. Tilt

Noting �	 the incremental spherical angle between the instantaneous out-
ward geometrical normal �nt and the instantaneous outward gravity normal
�ng in the ellipsoidal basis defined in (47), Wahr (1981) defines the tilt in
the east direction (or ϕ) by: 	E = �eϕ · �	 and that in the other horizontal
direction (approximatively south) by 	S = �ES · �	. Note that for an elliptical
Earth, the horizontal vector �ES is not quite equal to �eθ (see Equation (47)).
For the spheroidal incompressible homogeneous Earth model, we obtain:

	S = Vo

goa

[
(γ2 + δγ2)∂θP

2
2 + δγ4∂θP

2
4

]
cos(σ t +2ϕ),

	E = Vo

goa

[
(γ2 + δγ2)P

2
2 + δγ4P

2
4

] 1
sin θ

∂ϕ cos(σ t +2ϕ) (61)

with

γ2 =1+k2 −h2,

δγ2 = δk2 − δh2 + 4
21

α [1+k2 +3h2 −6l2] , (62)

δγ4 = δk4 − δh4 − 2
35

α [1+k2 +3h2 −6l2] .

For our incompressible homogeneous Earth model, we have:

γ2 =1− 1
1+ µ̄

(1+ δX2), δγ2 =− α

1995
1805+33µ̄−380µ̄2

(1+ µ̄)2
,

δγ4 =− α

105
114+857µ̄+306µ̄2

(1+ µ̄)(51µ̄+38)

with the numerical values given in Section 3.2, we obtain:

γ2 + δγ2 =0.759614, δγ4 =−0.0002913.
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For the semi-diurnal tidal wave M2, the order of magnitude of the pertur-
bations will be: (γ2 + δγ2)

Vo
goa

=2.18 mas and δγ4
Vo
goa

=−0.8µ as.
If the planet is rigid, these tilt coefficients will become:

γ2 =1, δγ2 = 4
21

α =0.0008210, δγ4 =− 2
35

α =−0.0002463.

4.4.2. Changes of the Vertical with Reference to the Earth’s Axis
or to a Fixed Direction

For astronomical instruments, the deflection of the vertical at a point
cause changes in the astronomic coordinates. For instruments related to the
outward normal to the geoid (for example with a bath of mercury), the lat-
itude is determined by comparing the direction of the vertical to the direc-
tion of the axis of rotation of the Earth. We can express from Equations
(45) and (49) the respective components of the deflection of the vertical �ng

and of the tangential displacement �uH in the ellipsoidal basis (47). The per-
turbation of the angle related to the deflection of the vertical with respect
to the Earth’s rotational axis will be:

(�ng, �ez

)−
(

�En, �ez

)
= �ng − �En + �uH . (63)

The perturbation of this direction may be written using the previous Love
numbers. We have:

(
�ng, �En

)
=− Vo

goa

{[
(�2 + δ�2)∂θP

2
2 + δ�4∂θP

2
4

]
cos(σ t +2ϕ)

−δ�3
1

sin θ
P 2

3 ∂ϕ sin(σ t +2ϕ)

}
�ES

− Vo

goa

{[
(�2 + δ�2)P

2
2 + δ�4P

2
4

] 1
sin θ

∂ϕ cos(σ t +2ϕ)

+δ�3∂θP
2
3 sin(σ t +2ϕ)

}
�EE (64)

with:

�2 =1+k2 − l2,

δ�2 = δk2 − δl2 + 2
21

α[2+2k2 − l2],

δ�4 = δk4 − δl4 − 1
35

α[2+2k2 − l2],

δ�3 =−	l∗. (65)
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For our incompressible homogeneous Earth’s model:

�2 =1+ 3
4

1
1+ µ̄

(1+ δX2), δ�2 = α

1995
931+267µ̄+380µ̄2

(1+ µ̄)2
,

δ�4 =− α

1260
3458+5235µ̄+3672µ̄2

(1+ µ̄)(51µ̄+38)

with the numerical values given in Section 3.2, we obtain:

�2 + δ�2 =1.181161, δ�4 =−0.0002340.

For the semi-diurnal tidal wave M2, the order of magnitude of the pertur-
bations will be:

(�2+δ�2)
Vo

goa
=3.39 mas, δ�3

Vo

goa
=0.6µas, and δ�4

Vo

goa
=−0.7µas.

For instruments related to the topographic outward normal (46) with
respect to a fixed direction (for example V.L.B.I.) noted �d, we compute the
changes in the angle

(
�nt, �d

)
:

(
�nt, �d

)
−

(
�En, �d

)
= �nt − �En + �uH . (66)

We may similarly define β coefficients such as:

(
�nt, �En

)
=− Vo

goa

{[
(β2 + δβ2)∂θP

2
2 + δβ4∂θP

2
4

]
cos(σ t +2ϕ)

−δβ3
1

sin θ
P 2

3 ∂ϕ sin(σ t +2ϕ)

}
�ES

− Vo

goa

{[
(β2 + δβ2)P

2
2 + δβ4P

2
4

] 1
sin θ

∂ϕ cos(σ t +2ϕ)

+δβ3∂θP
2
3 sin(σ t +2ϕ)

}
�EE (67)

with

β2 =h2 − l2,

δβ2 = δh2 − δl2 − 4
7
αh2 + 22

21
αl2, (68)

δβ4 = δk4 − δl4 + 1
35

α[6h2 −11l2],

δβ3 =−	l∗.
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For our incompressible homogeneous Earth’s model:

β2 = 7
4

1
1+ µ̄

(1+ δX2), δβ2 = 4α

665
228+25µ̄

(1+ µ̄)2
,

δβ4 = α

1260
11590+17697µ̄

(1+ µ̄)(51µ̄+38)

with the numerical values given in Section 3.2, we obtain:

β2 + δβ2 =0.421547, δβ4 =0.0002786.

For the semi-diurnal tidal wave M2, the order of magnitude of the pertur-
bations will be:

(β2 + δβ2)
Vo

goa
=1.21 mas, δβ3

Vo

goa
=0.6µas, and δβ4

Vo

goa
=0.8µas.

5. Conclusion

We have presented the analytical elasto-gravitational solutions for an
incompressible homogeneous spheroidal hydrostatic pre-stress planet sub-
mitted to the semi-diurnal tidal potential.

We have pointed out the problem related to the spherical reference
model which takes or not into account the radial fluid deformation induced
by the radial part of the centrifugal potential. As PREM is a mean spheri-
cal model built from seismological observations, we think that these effects
are already taken into account in the geometrical and physical parameters
of the initial reference sphere. Therefore, we believe that our results for
δh2, δl2, and δk2 are more realistic.

We have extended these results to the analytical study of the geo-
detic and gravimetric response of the Earth to the tides on the spheroi-
dal deformed surface. The order of magnitude of the perturbations of the
displacement is the millimeter and is consequently significant, because it is
well known that for space geodesy, it is now necessary to achieve the mm
level in the tidal displacements. The order of magnitude of the perturba-
tion of the direction of the vertical is the micro arc-sec that is to say too
small to be detected using VLBI. As a matter of fact, VLBI determina-
tions of earth-rotation variations, and of the coordinates of terrestrial sites
and celestial objects are made currently with estimated accuracies of about
±0.2 milliarcsecond or better.

That simple analytical solutions are not realistic but they are useful
to understand the physics of the problem, and especially the influence of
each geometric and physical parameter. They have also been used to check
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the numerical procedure of a new method (a spectral element method)
developed in order to take into account lateral variations of density and
rheological parameters, deviatoric pre-stresses and interfaces topography
(Métivier, 2005). We have developed such a model, because with the new
generation of gravity measurements, one of the challenges of the future 10-
years will be to provide more realistic Earth time gravity variation models.
Realistic solid tide models notably are needed for global consideration with
gravity satellites like GRACE, GOCE, and in the future GRACE/GOCE
follow on. More realistic gravity variation models are also needed for local
and surface measurements, particularly with the emergence of gravimetric
observatories network like the GGP network (Global Geodynamic Project)
which uses very accurate superconducting gravimeters.
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A. Boundary Conditions for the Perturbed System and Solutions

The constants δC3, δC4, δC5, and δC7 introduced in the perturbed δyi prop-
agator (see 36) may be determined from the boundary conditions (27).

We use the spherical harmonics Ymc
n and Yms

n . Consequently, we have,
for each degree n and order m, to determine the eight constants (δC3)

mc
n ,

(δC3)
ms
n , (δC4)

mc
n , (δC4)

ms
n , (δC5)

mc
n , (δC5)

ms
n , (δC7)

mc
n ,and (δC7)

ms
n from the

boundary conditions.

A.1. RADIAL ATTRACTION

At the Earth’s surface, we have, for the radial attraction:

[δξr ]a
+

a− =
[
−δd∂rξr + �∇Sδd · �ξ

]a+

a−
. (A1)

From the yi system (16) and the associated boundary conditions for a
spherical Earth, it is easy to show that:

[
−δd ∂rξr + �∇Sδd · �ξ

]a+

a−
=−2αgo

y3(a)

a

[
n(n+1)Ym

n P 0
2 +P 1

2 ∂θY
m
n

]
. (A2)

For a degree 2-order 2 potential, we have the following relations:

P 0
2 P 2

2 =− 2
7P 2

2 + 3
35P

2
4 and P 1

2 P 1
2 = 3

7P
2
2 + 6

35P
2
4 (A3)

with the Legendre polynomials: P 2
2 =3 sin2

θ and P 2
4 = 15

2 sin2
θ(7 cos2 θ −1).
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Consequently, the Equation (A2) for the semi-diurnal tidal M2 luni-solar
potential becomes:

[
−δd ∂rξr + �∇Sδd · �ξ

]a+

a−
=−2αl2

Vo cos(σ t +2ϕ)

a

6
7

[−P 2
2 +P 2

4

]
. (A4)

The left-hand side of the Boundary Condition (A1) may be written:

[
−∂δ�e

1

∂r

]

a+
− δξr(a) (A5)

with

δξr =
∞∑

n=0

n∑

m=−n

{
−n(δC5)

m
n rn−1 + 3go

a

[
(δC3)

m
n rn+1 + (δC4)

m
n rn−1

]}
Ym

n and
[
−∂δ�e

1

∂r

]

a+
=

∑

n,m

(n+1)

a

(
δ�e

1

)m

n
(a+)Ym

n (θ, ϕ).

From the continuity of the potential, we have:

[
δ�e

1

]a+

a− =−δd
[
∂r�

e
1

]a+

a− =+4πGρour δd (A6)

Consequently, we have:

(
δ�e

1

)m

n
(a+)= (

δ�e
1

)m

n
(a)+2αh2Vo cos(σ t +2ϕ)

×
[

2
7
P 2

2 δ2
nδ

2
m − 3

35
P 2

4 δ4
nδ

2
m

]
, (A7)

where δ
j

i is the Kronecker symbol (δj

i =1 if i = j and δ
j

i =0 if i 
= j).
The spherical harmonics Ymc

n and Yms
n define a basis and consequently,

we can equal each coefficients of degree n and order m of the right- and
left-hand side of the boundary condition (A1); it leads to four equations:

5
(
δCc

5

)2
2 a −3go

[(
δCc

3

)2
2 a2 + (

δCc
4

)2
2

]
=−3

αVo

a(1+ µ̄)
cos(σ t),

5
(
δCs

5

)2
2 a −3go

[(
δCs

3

)2
2 a2 + (

δCs
4

)2
2

]
=3

αVo

a(1+ µ̄)
sin(σ t),

(A8)
9
(
δCc

5

)2
4 a3 −3goa

2
[(

δCc
3

)2
4 a2 + (

δCc
4

)2
4

]
= 6

7
αVo

a(1+ µ̄)
cos(σ t),

9
(
δCs

5

)2
4 a3 −3goa

2
[(

δCs
3

)2
4 a2 + (

δCs
4

)2
4

]
=−6

7
αVo

a(1+ µ̄)
sin(σ t).
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A.2. TRACTIONS

The boundary condition for the surface tractions may be written from the
perturbed Cauchy stress tensor:

[
�er · δ�l

1

]

r=a

=
[
−δd �er · ∂r�

l
1 + �∇S∂d ·�l

1

]a+

a−
. (A9)

The left-hand side of this equation may be written from (32)
[
�er . δ�l

1

]

r=a

= �δT 1(a)

=
∞∑

n=0

n∑

m=−n

δym
2n(a)Ym

n (θ, ϕ)�er +aδym
4n(a) �∇Ym

n (θ, ϕ)

+aδym
8n(a) �∇��erY

m
n (θ, ϕ). (A10)

The right-hand side of (32) may be expanded into spheroidal and toroidal
vector:

⎛

⎝
−δd

[
∂r(�

l
rr )

]
r=a

+ 1
a
∂θ (δd)�l

rθ (a)

−δd
[
∂r(�

l
rθ )

]
r=a

+ 1
a
∂θ (δd)�l

θθ (a)

−δd
[
∂r(�

l
rϕ)

]
r=a

+ 1
a
∂θ (δd)�l

θϕ(a)

⎞

⎠= 1
19

αρoVo

1+ µ̄

×
{
−2

3
(32µ̄+57)

(−2
7

P 2
2 + 3

35
P 2

4

)
cos(σ t +2ϕ)�er

+2µ̄ �∇S

[(
37
21

P 2
2 − 8

35
P 2

4

)
cos(σ t +2ϕ)

]

+ 4
15

µ̄�e∧
r

�∇S

[
P 2

3 sin(σ t +2ϕ)

]}
. (A11)

The boundary conditions in tractions may be consequently written: For
δy4(a):

[
4
3

(
δCc

3

)2
2 a2 + 1

2

(
δCc

4

)2
2

]
= 37

42
αVo

goa(1+ µ̄)
cosσ t,

[
4
3

(
δCs

3

)2
2 a2 + 1

2

(
δCs

4

)2
2

]
=−37

42
αVo

goa(1+ µ̄)
sin σ t,

a2
[

6
5

(
δCc

3

)2
4 a2 + 3

4

(
δCc

4

)2
4

]
=− 4

35
αVo

goa(1+ µ̄)
cosσ t,

a2
[

6
5

(
δCs

3

)2
4 a2 + 3

4

(
δCs

4

)2
4

]
=+ 4

35
αVo

goa(1+ µ̄)
sin σ t. (A12)
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For δy8(a):

a2 (
δCc

7

)2
3 =− 1

15
αVo

goa(1+ µ̄)
sin σ t,

(A13)
a2 (

δCs
7

)2
3 =− 1

15
αVo

goa(1+ µ̄)
cos σ t.

For δy2(a), taking into account the x2
2 and x2

4 coefficients defined in (30):

−ρoa
2 (

δCc
5

)2
2 + ρogoa

19

[
(19−2µ̄)a2 (

δCc
3

)2
2 + (19+4µ̄)

(
δCc

4

)2
2

]

= 1
399

αρoVo

1+ µ̄
(128µ̄+779) cos(σ t),

−ρoa
2 (

δCs
5

)2
2 + ρogoa

19

[
(19−2µ̄)a2 (

δCs
3

)2
2 + (19+4µ̄)

(
δCs

4

)2
2

]

=− 1
399

αρoVo

1+ µ̄
(128µ̄+779) sin(σ t),

(A14)

−ρoa
4 (

δCc
5

)2
4 + ρogoa

3

19

[
(19+9µ̄)a2 (

δCc
3

)2
4 + (19+12µ̄)

(
δCc

4

)2
4

]

=− 2
665

αρoVo

1+ µ̄
(32µ̄+95) cos(σ t),

−ρoa
4 (

δCs
5

)2
4 + ρogoa

3

19

[
(19+9µ̄)a2 (

δCs
3

)2
4 + (19+12µ̄)

(
δCs

4

)2
4

]

= 2
665

αρoVo

1+ µ̄
(32µ̄+95) sin(σ t).

A.3. SOLUTIONS

We solve the 14 equations in order to find the 14 unknowns:
(
δCc

3

)2
2 = 2

665
αVo
a3go

(25µ̄−323) cos(σ t)

(1+µ̄)2 ,
(
δCs

3

)2
2 =− 2

665
αVo
a3go

(25µ̄−323) sin(σ t)

(1+µ̄)2 ,
(
δCc

4

)2
2 = 1

1995
αVo
ago

(3115µ̄+8683) cos(σ t)

(1+µ̄)2 ,
(
δCs

4

)2
2 =− 1

1995
αVo
ago

(3115µ̄+8683) sin(σ t)

(1+µ̄)2 ,
(
δCc

5

)2
2 = 2

665
αVo
a2

(127µ̄+475) cos(σ t)

(1+µ̄)2 ,
(
δCs

5

)2
2 =− 2

665
αVo
a2

(127µ̄+475) sin(σ t)

(1+µ̄)2 ,
(
δCc

3

)2
4 = 76

9
αVo
a5go

cos(σ t)

(1+µ̄)(51µ̄+38)
,

(
δCs

3

)2
4 =− 76

9
αVo
a5go

sin(σ t)

(1+µ̄)(51µ̄+38)
,

(
δCc

4

)2
4 =− 16

315
αVo
a3go

(153µ̄+380) cos(σ t)

(1+µ̄)(51µ̄+38)
,

(
δCs

4

)2
4 = 16

315
αVo
a3go

(153µ̄+380) sin(σ t)

(1+µ̄)(51µ̄+38)
,

(
δCc

5

)2
4 = 34

15
αVo
a4

µ̄ cos(σ t)

(1+µ̄)(51µ̄+38)
,

(
δCs

5

)2
4 =− 34

15
αVo
a4

µ̄ sin(σ t)

(1+µ̄)(51µ̄+38)
,

(
δCc

7

)2
3 =− 1

15
αVo
goa3

sin(σ t)

(1+µ̄)
,

(
δCs

7

)2
3 =− 1

15
αVo
goa3

cos(σ t)

(1+µ̄)
.

Knowing the constants, we know the perturbations of the displacement, of
the gravitational potential and of the stress tensor within the entire planet.
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