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Abstract. In an explosive eruption, the atmospheric column dynamics depend

strongly on the mass fraction of gas in the erupting mixture, which is fixed by

fragmentation in the volcanic conduit. At fragmentation, gas present in vesicular
magmatic liquid gets partitioned between a continuous phase separating magma

clasts and a dispersed phase in individual bubbles within the clasts. As regards

flow behavior, it is the former, continuous, gas phase which matters, and we show
that its amount is determined by the fragment size. Analysis of 25 fall deposits and
37 flow deposits demonstrates that ash and pumice populations follow a power law
size distribution such that N, the number of fragments with radii larger than r, is
given by N o r~P. D values range from 2.9 to 3.9 and are always larger than 3.0 in
fall deposits. D values for pyroclastic flow deposits are systematically smaller than
those of fall deposits. We show that at fragmentation the amount of continuous gas
phase is an increasing function of the D value. Large D values cannot be attributed
to a single fragmentation event and are due to secondary fragmentation processes.
Laboratory experiments on bubbly magma and on solid pumice samples demonstrate
that primary breakup leads to D values of 2.54+0.1 and that repeated fragment

collisions act to increase the D value. A model for size-dependent refragmentation
accounts for the observations. We propose that in a volcanic conduit, fragmentation
proceeds as a sequence of events. Primary breakup releases a small amount of gas
and is followed by fragment collisions. Due to refragmentation and decompression,
both the mass and volume fractions of continuous gas increase. The final D value,

and hence the mass fraction of continuous gas at the vent, depends on the time
spent between primary fragmentation and eruption out of the vent.

1. Introduction

Explosive volcanic eruptions eject a’large mass of
magma fragments, ranging from meter-sized blocks to
micron-sized ash particles dispersed at high altitudes in
the atmosphere. This population of fragments is the
end result of processes operating in the volcanic con-
duit and in the atmosphere (Figure 1). A key process
is “fragmentation,” such that bubbly magma disinte-
grates into fragments [ Wilson, 1976; Sparks, 1978]. In
most eruption models, this is taken to occur when the
volume fraction of gas bubbles in vesicular magma ex-
ceeds a threshold value, which is usually taken to be
75% [Sparks et al., 1994; Woods, 1995]. Such a thresh-
old criterion is appealing because of its simplicity but
obscures several important questions regarding the mix-
ture of gas and fragments which is generated. For ex-
ample, neither the sizes of the fragments nor the inter-
actions between the two components of the mixture get
specified. In physical models of the eruption process,
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fragmentation is also taken to mark a change of flow
dynamics, from a laminar regime involving viscous and
vesicular magmato a turbulent regime involving a mix-
ture of gas and suspended fragments. Thus the term
“fragmentation” amalgamates two different and impor-
tant changes: a topological change for the gas and liquid
phases and a change of dynamics.

As regards magma, fragmentation essentially marks
a transition from a continuous to a dispersed phase. As
regards the exsolved gas, the situation is more com-
plicated because gas gets partitioned in two different
phases: a continuous phase which separates the magma
fragments, and a second phase of bubbles within the
fragments. In a fragment, only those bubbles which
are connected to the surface are able to leak gas to the
continuous phase. The dispersed gas phase plays no
active role and basically acts to lower the density of
fragments with respect to pure magma. For the flow
regime, it is the continuous gas phase which matters
most, because it carries the magma fragments in sus-
pension and because it controls flow behavior in the
atmosphere. Determining the respective proportions of
the two gas phases is therefore critical. One may envis-
age two end-member situations. In one limit, each and
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Figure 1. Schematic representation of the main processes occurring in an eruptive conduit. At
fragmentation, bubbly magma breaks up into a number of fragments. A common assumption
is that all the gas present collects into a continuous phase carrying the fragments. This implies
that only ash particles are generated by fragmentation, which is not consistent with the presence

of pumice samples in pyroclastic deposits.

every gas bubble gets disrupted and all magma frag-
ments are vesicle free. We shall call this the “complete
atomization limit,” such that all the exsolved gas col-
lects into a continuous phase (Figure 1). In the other
limit, the magma fragments are large and retain a large
number of bubbles inside. In this case, the continuous
gas phase is a tortuous network separating the frag-
ments, and the mixture of gas and fragments does not
behave as a suspension. Pumice samples from pyroclas-
tic deposits are highly vesicular and provide evidence for
gas kept within fragments [Gardner et al., 1996; Kamin-
ski and Jaupart, 1997] (Appendix A), suggesting that
the “complete atomization” limit may not be a valid
approximation.

The above argument implies that the mass fraction
of continuous gas in the volcanic mixture depends on
fragmentation. Thus fragmentation not only separates
between “explosive” and “effusive” eruption regimes
but may also determine which explosive regime ensues.
Consider, for example, the Plinian and pyroclastic flow
regimes. In the Plinian case, the erupted material be-
comes lighter than surrounding air and a buoyant col-
umn develops to high altitudes in the atmosphere. In
the pyroclastic flow regime, the eruption column col-
lapses at some height above the vent [Sparks and Wil-

son, 1976; Woods, 1995]. Specifying which regime pre-
vails requires knowledge of the mass fraction of gas at
the vent, which involves three steps. The first step
is to estimate the amount of volatiles dissolved in the
melt at depth [Rutherford et al., 1985; Anderson et al.,
1989]. The second step is to predict how bubbles nucle-
ate and expand due to pressure release and to specify
the mechanism of fragmentation. This has been the
focus of much recent research, involving field studies
[Houghton and Wilson, 1989; Klug and Cashman, 1994,
Gardner et al., 1996), theoretical calculations [ Valentine
and Wohletz, 1989; Proussevitch et al., 1993; Macedonio
et al., 1994; Woods, 1995] and laboratory experiments
[Anilkumar et al., 1993; Mader et al., 1994; Sugioka
and Bursik, 1995; Lyakhousky et al., 1996; Alibidirov
and Dingwell, 1996]. The third step is to specify how
much gas gets released during and after fragmentation.
Up until now, this third step has been overlooked and
calculations have been made in the “complete atomiza-
tion” limit [e.g., Woods, 1995]. As will be demonstrated
here, this leads to an upper bound on the amount of
continuous gas in the volcanic mixture. Our major goal
in this paper is to evaluate how far from this limit true
volcanic mixtures are.

Understanding how fragmentation proceeds and what
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fragment sizes are generated is important for realistic
flow models [Wilson et al., 1980; Woods and Bursik,
1991]. Fragments typically account for more than 90%
of the volcanic mixture mass, and hence carry the mass,
momentum, and energy fluxes of the flow. The dynami-
cal interactions between gas and fragments depend criti-
cally on size, and large fragments can achieve large ther-
mal anomalies and differential velocities with respect to
surrounding gas. Most published models donot account
for this, notable exceptions being those by Woods and
Bursik [1991] and Neri and Macedonio [1996], and it is
important to evaluate the resulting errors.

In this paper, we use published data on the sizes of
magma fragments from a large number of Plinian and
pyroclastic flow deposits. We show that these fragment
populations follow a power law size distribution with
very specific values of the exponent, and we discuss how
this provides constraints on the fragmentation process
itself as well as on the dynamics of explosive volcanic
eruptions. From a broader perspective, pumice and ash
populations offer a striking example of fragmented ma-
terials encompassing a very large range of sizes (typi-
cally more than 4 orders of magnitude). The field data,
laboratory experiments, and analysis given in this pa-
per have implications for fragmentation mechanisms in

general [e.g., Redner, 1990].

2. Amount of Gas Released at
Fragmentation

Fragmentation leads to the formation of individual
bubble-bearing magma fragments. For the following ar-
gument, this process may be represented as fractures, or
interfaces, developing through bubbly magma. Bubbles
intersected by these fractures release their gas, in con-
trast to bubbles buried deeply in the fragments which
can only leak their gas to the exterior if they are con-
nected to the surface (Figure 2). For simplicity, we call
”continuous” and ”dispersed” the gas phases from the
former and latter types of bubbles, respectively, and
evaluate their respective amounts of gas. The calcula-
tion is carried out at fragmentation and we discuss in
Appendix A what happens to the ”dispersed” gas phase
later in the eruption sequence.

A simple argument illustrates the basic principle, and
detailed calculations are deferred until Appendix B. Let
us consider an initial volume of magma V, which breaks
up into N; fragments of identical size r. We assume for
simplicity that the fragments are spherical. By defini-
tion,

Vo = N¢ %wrs, (1)
and the total volume of gas is
Vgas = € Vs, (2)

where € is the vesicularity of magma at fragmentation.
We consider large fragments, which may be considered
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representative of the whole bubbly magma. The total
volume of gas inside one such fragment is

4 ,
Vin = 6§7rr3. (3)

If the mean bubble radius is b, bubbles located in a

"spherical shell of thickness 2b may be intersected by the

fragmentation surface (Figure 3). This shell has volume

Vehet = 4mr® — dm(r—20)° ~ 8mr2 b, (4)

One may consider that this shell has the same volume
fraction of gas as the whole magmatic mixture. In the
shell, some bubbles are not intersected by the fragmen-
tation surface (Figure 3). Ignoring this for the moment,
we obtain an upper bound on the amount of gas released
at fragmentation:

R
RO,

Coarse fragmentation

'el®L" -1V
20 Jo 1O W
‘0O Rd 9
N YO 4
‘alo ) do!I®

29 b9 ) T

Figure 2. The size of fragments plays a critical role in
determining the amount of gas released by fragmenta-
tion. Large fragments, which become pumices, preserve
a large fraction of the exsolved gas. Small fragments,
which become ash particles, do not retain any gas.
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Figure 3. Sketch of a bubbly fragment at fragmenta-
tion. Gas bubbles may be split into two populations,
depending on whether or not they are intersected by
the fragmentation surface.

Vour < € Venen = €8mr?b,

which is rewritten as a fraction of the total amount of
gas present:

Vout 6b
< —.
Vin = ¢ (6)

Equation (6) shows how the fragment size comes into
play: the larger the clast, the smaller the amount of gas
released. In an explosive eruption, the sizes of magma
fragments span a large range, and knowledge of the
grain size distribution is needed for evaluating the mass
of the continuous gas phase in the erupting mixture.

3. Fragment Populations in Pyroclastic
Deposits

Pyroclastic deposits have been studied from different
perspectives.. Sedimentological techniques have been
used to assess sorting processes as a function of wind
velocity and mass discharge rate [e.g., Fisher, 1964].
Walker [1971] and Pyle [1989] have sought empirical
ways to characterize deposits. Wohletz [1983] has at-
tempted to link the size of pyroclasts to eruptive pro-
cesses. Here, however, we are interested in the whole
fragment population which is ejected from the eruptive
vent, and in the mechanisms which are responsible for
the size distribution of pyroclasts. We defer a discussion
of fragmentation until the next section and summarize
briefly a few important points.

Three size distribution functions, power law, lognor-
mal, and exponential, are sufficient to account for al-
most all fragment populations generated in industrial
and natural processes [e.g., Redner, 1990]. The log-
. normal distribution describes successfully droplets pro-

(5)
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duced by the breakup of a liquid jet. Fragmenting a
solid by an explosion or by hitting it with a hammer
generates power law distributions. The exponential dis-
tribution, also called the Rosin-Hammer law, character-
izes sequential processes such as grinding and milling.
In a volcanological context, Wohletz et al. [1989] have
used these distributions to study sorting and deposition
in pyroclastic flows.

3.1. Method of Analysis

We have determined the size distribution of fragments
from 25 pyroclastic fall deposits and 37 pyroclastic flow
deposits using published data. Fragment sizes are usu-
ally determined by sieving and are given in ¢ units, such
that
logd

- IOg 9 ’ (7)

where d is the maximum length of the fragment in
millimeters. A few studies report data for the total
clast population, which can be used directly. More fre-
quently, this information is not available, and we have
used the local grain size distribution and deposit thick-
ness at different locations together with the isopach
maps. We evaluate the total mass in sieve class ¢, My,
by the volume integral

L
My = [ € At

¢ =

(8)

where h(l) is the deposit thickness and Cy(l) the con-
centration of class ¢ at distance ! from the vent. (A(l)
dl) is the area bounded by isopachs at distances ! and
[+dl, and L is the distance where h or Cy drop to zero.
We use linear interpolations for A and Cy between lo-
calities.

We were able to find enough data for 25 fall deposits
(Table 1). Two different data sets with slightly different
size ranges are available for the Fogo A, Azores, deposit.
The 1980 Mount St. Helens deposit is made of alterna-
tions of Plinian and coignimbrite ash layers. According
to Carey et al. [1990], more than 77% of this deposit
was erupted as pyroclastic flows and coignimbrite ash
plumes and it was therefore classified as ”coignimbrite.”
In several pyroclastic flow deposits, a global reconstruc-
tion of the fragment population is impossible because
sieve data are reported for a small number of sites or
because isopach maps are not given. For some of these,
however, the grain size distribution appears to depend
on distance only weakly, suggesting that deposition oc-
curred en masse, that is, without significant sorting dur-
ing lateral flow. In this case, we have averaged the grain
size distributions reported, rejecting deposits where less
than four different localities had been sampled. Results
for 20 pyroclastic flow deposits are listed in Table 2. We
have also used papers where the authors report data for
a single “typical” sample assumed to be representative
of the whole (Table 3). These data are clearly less re-
liable, but we found no systematic difference with the
former category. They have been included for the sake '
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Table 1. Power Law Exponents for Pyroclastic Fall Deposits

Reference D

Volcano Eruption Deposit Ao
Askja D, Iceland Pl (G) Sparks et al. [1981) 3.0 [4;-9]
Chuseri, Japan Pl (G) Hayakawa [1985] 3.6 [2;-5]
Hatepe, New Zealand Pl (G) Walker [1981a) 3.4 [2-4
La Soufriére, French West Indies, Subpl (G)  Brazier et al. [1982] 3.0" 8;-2
Nambu, Japan Pl (G) Hayakawa [1985] 3.7 [0;-5
Shikotsu, Japan Pl (G) Katsui [1959) 3.9%* 1;-5
Tarumai, Japan Pl (G) Suzuki et al. [1973] 3.3"™  [2;-5
Taupo, New Zealand Pl (G) Walker [1980] 3.2"*  [5;-3]
Waimihia, New Zealand Pl (G) Walker [1981a] 3.2 [1;-4
Fogo A, Azores P1(R) Walker and Croasdale [1970] 3.1** 3;-5]
Fogo A, Azores Pl (R) Bursik et al. [1992] 3.3 [4;-5]
Fogo 1563, Azores Pl (R) Walker and Croasdale [1970]  3.2***  [1;-4]
Hudson, Chile P1 (R) Scasso et al. [1994] 3.3 [10;-2]
Ksudach, Russia Pl (R) Braitseva et al. [1996] 3.4 5;-2
Santa Maria , Guatemala P1 (R) Williams and Self [1983] 3.9** 5;-5]
Toluca, Mexico P1 (R) Bloomfield et al. [1977) 3.4 4;-5]
Pl (R) Bloomfield et al. [1977] 3.5™ 4;-5
Mount St. Helens, United States  Coig (G)  Carey and Sigurdsson [1982] 3.7***  [9;-4
Askja C, Iceland PhPl (G)  Sparks et al. [1981] 3.5 [5;-7]
Hachinohe, unit 1, Japan PhPl (G)  Hayakawa [1985] 3.5 [9;-2]
Hachinohe, unit 2 PhPl (G)  Hayakawa [1985] 3.5%**  [9;-3]
Hachinohe, unit 3 PhPl (G)  Hayakawa [1985] 3.5 [9;-3
Hatepe ash, New Zealand PhPl (G)  Walker [1980] 3.2*" 9;-3
PhPl (G)  Walker [1981b] 31" [9:-3
Rotongaio, New Zealand PhPl (G)  Walker [1980] 3.5™" 9;-3
Wairakei, New Zealand PhPl (G)  Self[1983] 3.3"* 8;-1]

Abbreviations are G, total population given by the author; R, population reconstructed using
isopachs and local distributions at various sites; Pl, Plinian deposit; SubPl, SubPlinian deposit;
PhPI, phreato-than deposit; Coig, c01gn1mbr1te ash.

Ag, range of sieve units for the data.

* Indicates reasonable agreement with a power law.
** Excellent agreement with a power law in the intermediate size range, and small deviations at

small and large sizes.

*** Excellent agreement with a power law distribution over the whole size range.

of completeness. The total number of pyroclastic flow
deposits available for study is 37.

In order to calculate the number of fragments, we
divide the total mass in each sieve class by the av-
erage fragment mass. This requires knowledge of the
fragment density p*, which may not be the same for
all sieve classes. As the sieve aperture diminishes, the
fragment density tends to increase [ Walker, 1980]. This
reflects the fact that a small fragment does not contain
a large number of bubbles and hence is not represen-
tative of the whole magma/bubble mixture. We know
that fragments with radii smaller than the bubble ra-
dius b cannot contain any gas. Large fragments sample
the average mixture, and their densities are expected to
be independent of size. This has indeed been verified for
fragments larger than about 1 cm [Houghton and Wil-
son, 1989; Gardner et al., 1996]. For fragments smaller
than this, we assume that the fragment vesicularity €*
depends on fragment radius » as follows:

& = e(l-r/r),
€ = 0, r<re,

r>r., (9)
(10)

where r is the fragment radius and € is the average
vesicularity of the mixture. Limit radius 7. is related to

the average bubble size. Fragments much larger than r,
are representative of the whole mixture, and fragments
smaller than r. are devoid of vesicles. Using (9), the
density of a fragment p* is given by

*

= (- pge ~op(l—e), (1)

where p; is the magmadensity and pg is the gas density.
Throughout the following we have taken r. = 107%
and € = 75%. We calculate the total number of frag-
ments in the sampled population and deduce the frac-
tion represented by each sieve class. This normalization
procedure ensures that the results are independent of
the specific value taken for magma density. The results
are weakly sensitive to the other two parameters, 7.
and ¢, provided that their values are chosen within re-
alistic ranges. As we shall see, the size distributions can
be characterized accurately using data at intermediate
grain sizes, for which no correction is required.

3.2. Power Law Distributions

Grain size distributions for the Plinian populations
at Askja, Iceland [Sparks et al., 1981], and Hachinohe,
Japan [Hayakawa, 1985], are shown in Figure 4. Data
from the Taupo ignimbrite, New Zealand [Walker and
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Table 2. Power Law Exponents for Pyroclastic Flow Deposits: Whole Deposits

Volcano Eruption Deposit Reference D A
Merapi, Indonesia Ig (G) Boudon et al. [1993) 29" [6;-6
Taupo, New Zealand Ig (G) Walker and Wilson [1983] 3.3 [5;-6
Acatlan, Mexico Ig (R) Wright and Walker [1981] 29" [5;-5
Aira, Japan Ig (A-13)  Murai [1961 3.2* [9;-8
Akan, Japan Ig (A-4)  Murai [1961 2.9 [9;-7
Asamayama, Japan Ig (A-38)  Muras [1961 3.1 [9;-9
Hakone, Japan Ig (A-13)  Murai [1961] 3.0"*  [9;-9
Harunasan, Japan Ig (A-4)  Muras [1961 3.1* [9;-7
Ko-Fuji, Japan Ig (A-10) Murai [1961 3.0" 9;-9
Komagatake, Japan Ig (A-10)  Murai [1961 3.0%* 9;-8
Kusatsu-Shiranesan, Japan Ig (A-4) Murai [1961 3.0** 9;-7
Kutcharo, Japan Ig (A-10) Murai [1961 3.1* 9;-6
Monte Pilato, Lipari, Italy Ig (A-21) Dellino and La Volpe [1995]  3.1*** [6;-6

S (A-13)  Dellino and La Volpe [1995] 3.2**  [6;-6
Nantaisan, Japan Ig (A-6)  Muras [1961) 2.9%* 9;-7
Rabaul, Papua New Guinea . Ig (A-27) Walker [1981b] 3.2 [9;-6

Ig (A-10) Walker [1981b)] 3.2**  [9;-6
Shikotsu, Japan Ig (A-11)  Murai [1961] 3.1* 9;-6
Tokachidake, Japan Ig (A-8)  Murai [1961] 3.0** 9;-9
Toya, Japan Ig (A-10)  Murai [1961] 3.2** 9;-6
Towada, Japan Ig (A-22)  Murai [1961] 3.2%*  [9;-8

Abbrevations are G, total population given by the author; R, population reconstructed
using isopachs and local distributions at various sites; A-n, average of n local populations;

Ig, ignimbrite; S, surge deposit.
A¢, range of sieve units for the data.

* Indicates reasonable agreement with a power law.
** Excellent agreement with a power law in the intermediate size rahge, and small deviations

at small and large sizes.

*** Excellent agreement with a power law distribution over the whole size range.

Wilson, 1983], are represented in Figure 5. For all the
deposits studied, save for the single exception of the 79
A.D. Vesuvius, Italy, Plinian deposit, we find that the
number of fragments in each sieve class ¢, A(¢), follows
closely the following equation:

Inz [A(¢)] = Ing [N,] - Dg,
where N, is a normalization constant. This equation
reflects a power law size distribution [Hartmann, 1969]:

N(R>r)=Ar P, (13)
where N(R > r) is the number of fragments greater
than 7, and A is a normalization constant.

In the 62 deposits used for this paper, the available
size range extends over at least six ¢ units, typically
from 0.12 to 8 mm (3 > ¢ > —3), which is sufficient
for a reliable analysis. The exponent of the power law
distribution was obtained using a least squares fit to the
data. We estimate that the error does not exceed +0.1
using departures from the best fit power law and by
repeating the analysis for various subsets of the data.
Using either the coarse fraction (larger than 1 mm), or
the fine fraction (less than 1 mm), led to the same power
law exponent. We evaluate the consequences of errors
in the data by calculating the total mass of the deposit

(12)°

My = / %ﬂ'pr?’dN(r)

Tmin

Tmax 4
/ ~mpr3\(=D)r~P-ldr,

min

(14)

where rmin and rpay are the lowest and largest size of
the distribution. For D # 3,

4 D _ _
Mot = _)‘gﬂ'pD _3 [rfnaxD - Tr?;ﬁnD] :

(15)

- We split this mass into two contributions from frag-

ments larger and smaller than the middle size (rmin +
Pmax)/2, and calculate their ratio. For pyroclast popu-
lations, values of D are close to 3, and adding or sub-
tracting 0.1 to the best fit D value acts to change the
mass ratio by a factor of about 2. This shows that it
takes gross changes in the sieve data to affect the expo-
nent value.

In the tables we have rated how well the size data
fit a power law. Pyroclastic fall deposits are generally
excellent. Pyroclastic flow deposits tend to be less sat-
isfactory, which may be attributed to imperfect data
coverage. For those few flow deposits where enough
data are available to reconstruct the whole fragment
population, the agreement with a power law size dis-
tribution is excellent. The nature of the data available
raises two different issues. One issue is whether pyro-
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Table 3. Power Law Exponents for Pyroclastic Flow Deposits: Single

Samples
Volcano Eruption Deposit Reference D Ag
Altavilla, Italy Ig Walker [1971] 3.4™ 5;-5]
Angra, Azores Ig Walker [1971) 3.1 5;-5]
Atitlan, Guatemala Ig Walker [1971] 3.2" 5;-5]
Granadilla, Canary Islands Ig Booth [1973] 3.3 [5;-5]
Hakkadasan, Japan Ig Murai [1961] 3.2" 9;-8
Herculaneum, Italy Ig Walker [1971] 3.1 5;-4
Krakatau, Indonesia Ig Carey et al. [1996] 3.3" 10;-5)
Ig Carey et al: [1996] 3.2 [10;-5]
Ngauruhoe, New Zealand Ig Nairn and Self [1978] 3.0** 4;-6]
Ig Nairn and Self [1978] 2.9** 4;-6]
Numayjiri, Japan Ig Murai [1961] 3.0" 9;-9
Osoreyama, Japan Ig Murai [1961] 3.0™ 9;-5
Povoacéo, Azores Ig Walker [1971] 2.9" 5;-5]
San Mateus, Azores Ig Walker [1971] 3.1 5:-5
Takaharayama, Japan Ig Murai [1961] 3.2" 9;-6
Tazawa, Japan Ig Murai [1961] 3.1 9;-6
Tokachi, Japan Ig Murai [1961] 3.0** 9;-9

Data for a single representative sample in a deposit.

Ig, ignimbrite.
Ad¢, range of sieve units for the data.

** Excellent agreement with a power law in the intermediate size range, and small

deviations at small and large sizes.

*** Excellent agreement with a power law distribution.

clastic populations can be characterized by a power law
over the whole size range. The other issue is that we are
interested in clast sizes in the volcanic conduit, but only
sample fragments which have accumulated in a deposit.
Thus we must assess whether the fragment population
gets modified once it has left the eruptive vent.
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Figure 4. Grain size distribution for the Hachinohe,
Japan, and Askja, Iceland, Plinian deposits (data from
Sparks et al. [1981] and Hayakawa [1985]). Data are
shown as the number of fragments in each sieve class
A(¢) normalized by an arbitrary constant Nie, as a
function of size. Sieve unit ¢ is such that the particle
diameter is 27¢ mm. The slope of Iny [A(4)] versus ¢
is the power law exponent D.

3.3. Bias in the Data

In some cases (identified in the tables), we found
small deviations from the best fit power law for small
and large sizes. One example from the Rotongaio fall
deposit, New Zealand [Walker, 1981b], is illustrated in
Figure 6. Such anomalies appear as deficits and may be
attributed to various causes. A sampling problem is en-
countered for large fragments, with radii larger than a
few tens of centimeters (¢ < —6). Such fragments repre-
sent a very small fraction of the total deposit, and hence
a representative sample would require sieving enormous
volumes in the field. The main problem, however, is for
fine particles.

The finest fraction of an ash and pumice population
is often lost to the atmosphere, [e.g., Wiesner et al.,
1995]. Furthermore, as noted by Sparks et al. [1981],
distal ash deposits may be eradicated soon after depo-
sition, by rain, for example. In fact, the data for very
small sieve classes are seldom measured in the field, and
are frequently obtained by extrapolation. For exam-
ple, Walker [1981b] determined isopachs for a number
of sieve classes and used an extrapolation technique to
infer the positions of isopachs for smaller fragments.
On the one hand, this may be considered problematic
because the amount of fines is not measured directly.
On the other hand, the fines are usually missing from
the deposit and this procedure allows a reconstruction.
Nevertheless, it is clear that deviations from the power
law may be due to uncertainties in the extrapolation
technique.

Where it has been demonstrated, the loss of frag-
ments is significant only for sizes smaller than 0.5 mm
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Figure 5. Grain size distribution for the Taupo ign-
imbrite, New Zealand (data from Walker and Wilson
[1983]). Data are shown as the number of fragments in

each sieve class A(¢) normalized by an arbitrary con-
stant Nper. Sleve unit ¢ is such that the particle di-
ameter is 2~% mm. A power law distribution allows an
excellent fit to the data.

(¢ > 1) [e.g., Wright and Walker, 1981]. Some deposits
with very large proportions of fines, that is, with large
D values, are available. For some of those, the data
available span an extremely large size range (ffom 9to
-3 ¢ units at Hachinohe, and from 9 to -4 at Mount
St. Helens, Table 1), and there is no detectable change
of power law exponent at some intermediate size. This
shows that both the coarse and fine fractions are char-
acterized by the same size distribution, and hence that
the coarse fraction (¢ < 1, ie. d > 0.5 mm) is suf-
ficient to characterize the whole population. We have
emphasized above that it takes large errors in the sieve
data to affect the exponent value. For the power law
exponents found here, the missing fine fraction must
represent more than 50% of the total deposit mass to
affect the results significantly.

The problem of missing fines is difficult to solve, and
one must ask what is the best method to reconstruct
the fine fraction. This fraction cannot be recovered,
and the various assumptions which have been made
are impossible to test. One procedure is to extrapolate
isopach maps [e.g., Walker, 1981b], which implies an hy-
pothesis on settling conditions. Other procedures based
on the systematics of field data have been adopted, as
discussed below. In other scientific fields, a common
method has been to use the size distribution itself, and,
more specifically, power law distributions [Cargill et al.,
1981; Turcotte, 1992, pp. 58-63]. The missing fractions
are estimated by extrapolating the best fit distribution
established over an intermediate size range. We note
that deviations from a power law distribution tend to
decrease when the sampling is more extensive, and that
power law distributions have been found for many other
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fragment populations which could be comprehensively
sampled [Redner, 1990]. In fact, pyroclast populations
tend to be closer to power law size distributions than
many of these other populations [e.g., Ranz, 1959; Hart-
mann, 1969]. We shall show later in this paper that the
fragmentation of bubbly magma does generate power
law size distributions.

3.4. Coignimbrite Ash Layers

Pyroclastic flows often generate secondary ash plumes
which generate coignimbrite ash layers scattered over a
wide area. Such layers may be easily remobilized and
eradicated, implying that, in some cases, a flow deposit
may only account for part of the total fragment popu-
lation ejected from the vent. Two methods have been
used to correct for this. Stratigraphic studies of a de-
posit may reveal changes of size distribution as a func-
tion of height. Typically, one may observe that upper
units are depleted in fines with respect to the base. Such
size grading affects mostly fragments smaller than 0.5
mm (¢ > 1) [Wright and Walker, 1981]. Using a ref-
erence unit unaffected- by sorting and loss of fines, the
other units can be reconstructed empirically. An alter-
native method is to use the initial crystal content of the
magma determined from the coarsest pumices. Frag-
mentation effectively separates small magma fragments
and crystals, and subsequent ash loss leads to layers
which are anomalously crystal rich [Sparks and Walker,
1977]. One may reconstruct each sieve class by bring-
ing the crystal content back to its original magmatic
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Figure 6. Grain size distribution for the Rotongaio
ash deposit, New Zealand (data from Walker [1981b]).
Data are shown as the number of fragments in each sieve
class A(¢) normalized by an arbitrary constant Npe.
Sieve unit ¢ is such that the particle diameter is 27¢
mm. In an intermediate size range spanning 3 orders
of magnitude, the data are consistent with a power law
with exponent D=3.5. The data for the smallest sizes
deviate from this power law. These data have been
estimated by extrapolating the positions of isopachs for
large grain sizes.
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value. Such a correction has been applied to the Taupo
ignimbrite [Walker and Wilson, 1983], where it is esti-
mated that about 45 % of the total erupted material
has been lost. The significance of this estimate may be
assessed using the error analysis given above, where we
showed that changing the D value by 0.1 requires chang-
ing the proportions of the coarse and fine fractions by
a factor of about 2. The uncorrected Taupo ignimbrite
data lead to D = 3.2, whilst the corrected data lead to
D = 3.3. The corrected data are in remarkable agree-
ment with a power law distribution throughout the size
range available (Figure 5).

3.5. Changes of Size Distribution During
Deposition

Pumices may break up when hitting the ground. or
as they get buried in a thick deposit. If late breakage
is predominant, the local grain size distribution in a
deposit should not depend on distance. In near-source
Plinian deposits, the majority of coarse clasts are bro-
ken by impact [Sparks et al., 1981]. The influence of
impact decreases away from source and impact break-
age is unimportant for clasts less than a few centimeters
in diameter (¢ > -5). The very coarse fraction (¢ < -
5) is seldom used (Tables 1-3). Away from source, the
local grain size distribution of a Plinian deposit varies
systematically as a function of distance, as predicted by
quantitative models of settling from an umbrella cloud
[Burstk et al., 1992; Koyaguchi, 1994]. The agreement
between theory and observation indicates that deposi-
tion does not affect significantly the global Plinian grain
size distribution.

In a pyroclastic flow, fragments are susceptible to
abrasion and refragmentation over the whole length of
the deposit [ Wohletz et al., 1989]. It is difficult to eval-
uate the importance of these effects with an a priori
physical model and the best method would be to com-
pare deposits with different emplacement characteris-
tics. This is not feasible with the present data set for
lack of information, but we note that a surge deposit
from Monte Pilato, Italy [Dellino and La .Volpe, 1995]
has almost the same power law exponent as the associ-
ated flow deposit (Table 2). Furthermore, we will show
that if late refragmentation is indeed significant during
lateral transport at the surface, the result should be an
increase of the D value. Thus the values of D from the
deposits provide upper bounds for the values of D at
the vent. This point must be born in mind for later
discussions.

3.6. D Values of Pyroclastic Deposits

Values of exponent D for the different fall deposits
studied are between 3.0 and 3.9 (Table 1), that is, are
always greater than 3. Figure 7 indicates that the py-
roclastic flow exponents are systematically smaller than
the fall exponents. As will be discussed later, this find-
ing is important and it would be desirable to base it on
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Figure 7. Histograms of the power law exponents for
the deposits listed in Tables 1, 2, and 3.

firmer ground with more detailed and comprehensive
studies of flow deposits. Nevertheless, it is significant
that, in all the papers we have consulted, we were not
able to find asingle flow sample with D > 3.4 (Tables 2
and 3) and that the D values for flow deposits are clus-
tered around 3.1. At Taupo, even after correction for
the loss of fines, the ignimbrite is clearly coarser than
the Plinian deposit from the same eruption [ Walker and
Wilson, 1983]. Another observation is that there are no
populations with exponents smaller than 2.9, which is
also significant, as discussed below. A final remark is
that the exponents span a rather large range. The dif-
ferent D values are not due to poor resolution or to
errors in the best fit procedure, as emphasized by Fig-
ure 4, which shows that the two best Plinian data sets
lead to D values of 3.0 and 3.5.

The exponent of the power law distribution provides
a convenient and precise way to characterize pyroclastic
populations, which can be compared to bulk eruption
characteristics. For example, we have found that, in
Plinian eruptions, the D value is not correlated to the
mass discharge rate.

4. Physical Processes of Fragmentation

4.1. Previous Studies

There are a large variety of and a vast literature on
fragmentation processes [see Redner, 1990], and it is im-
possible to do justice to this topic here. It is important
to distinguish between “primary” breakup, such that
the starting material is split into individual fragments,
and “secondary” breakup, such that the primary frag-
ments get refragmented. ”Primary” size distributions
have been determined empirically and have been justi-
fied from the physics of the breakup process in a few
cases only. Theoretical efforts have been focused on
continuous fragmentation, where the size distribution
evolves due to repeated ”secondary” breakup. Most
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studies have dealt with the fragmentation of dense ma-
terial, either solid [ Turcotte, 1986] or liquid [ Ranz, 1959],
and pyroclasts offer the different case of fragments de-
rived from highly vesicular liquid with void fractions in
excess of 60% [Gardner et al., 1996).

Any analysis must start with the ”primary” breakup
process and its associated size distribution. Key vari-
ables are the material properties, sample geometry, and
the energy input. The latter has the most important
effect. At small energy input, only small pieces can be
broken at the surface of the sample. At medium en-
ergy input, a small number of fragments are generated,
whose sizes remain close to those of the initial sam-
ple. At large energy input, all flaws and heterogeneities
in the sample may be ”activated” and ‘a wide range of
fragment sizes may be generated. The data availablein-
dicates that, for a wide variety of materials and breakup
processes, fragment sizes follow power law distributions
with a very narrow range of exponents [Redner, 1990].
The largest size is a function of the initial sample di-
mensions and the smallest size is controlled by the scale
of flaws and heterogeneities in the sample. In the case of
vesicular magma fragments, flaws are easily identified:
they are the bubbles themselves. Indeed, the smallest
ash particles are remnants of vesicle walls [Fisher and
Schmincke, 1984].

Hartmann [1969] and Turcotte [1986] have shown that

any “primary” breakup process which is scale invariant

generates power law exponents between 2 and 3. The
macroscopic self-similar power law distribution may be
derived for specific failure models, such as the genera-
tion of weak planes, for example [Allégre et al., 1982;
Turcotte, 1986]. For each type of failure, there ex-
ists a critical concentration of defects for which catas-
trophic fragmentation occurs. This critical probability
is macroscopically related to the power law exponent of
the fragment population [Turcotte, 1986]

pe = 20/8. (16)
This probability cannot be larger than 1, which implies
that the power law exponent must be smaller than 3. In
this theory, the breakup of a fragment of size r generates
2D fragments of size r/2 [Turcotte, 1986]. Mass conser-
vation requires that a fragment of size r cannot generate
more than eight fragments of size 7/2 and hence that
the maximum D value is 3.

A key property of pyroclast populations is their large
size range, spanning 6 orders of magnitude from micron-
sized ash particles to meter-sized pumice blocks. Gard-
ner et al. [1996] have shown that, for pyroclasts larger
than 1 cm, vesicularity values and fragment shapes are
scale invariant. It would be natural to expect that
the volcanic fragmentation process is also scale invari-
ant. Pyroclastic populations are indeed characterized
by power law size distributions, but their exponents are
generally larger than 3.0 (Table 1). Another peculiar-
ity of pyroclastic populations is the large spread of D
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values. One would expect a single value of the expo-
nent corresponding t6 the specific breakup process at
work. We have made an extensive literature search and
have found no “primary” fragmentation event capable
of generating such peculiar features. One may propose
two explanations. One isthat the pyroclastic size distri-
bution is related to the bubble size distribution, which
may vary between different magmas and different erup-
tions. Another explanation is that it is due to secondary
fragmentation. In order to evaluate these, we have car-
ried out a series of fragmentation experiments in the
laboratory on volcanic materials. The experiments are
not meant to reproduce the true mechanism of fragmen-
tation at work in a volcanic eruption, but to illustrate
the basic mechanisms involved.

4.2. Laboratory Experiments: Primary
Fragmentation

We have used rhyolitic pumices from the Minoan
Plinian deposit in Santorini, which have a range of vesic-
ularities [Gardner et al., 1996]. A piston was dropped
once onto a large Minoan sample and induced fragmen-
tation. The size distribution, determined by sieving, fits
a power law with an exponent of about 2.7 (Figure 8).
This value is close to those found for a variety of explo-
sion or shattering phenomena [Turcotte, 1986]. In the
piston experiments, the energy supply is large, implying
no limitation on the size and type of defects which may
get activated within the material. A different fragmen-
tation mechanism is bubble expansion and coalescence
due to decompression. In this case, energy originates

10 I‘.. T T T T
vy
~ .
L "~ Py Do
O-—-\.-\Q 2.6 -1
b5 - DO (N
Pt ~ o DQ
Z \.\ U~02'4 Ce
< -10 } h 8 Yo SO -
N’ \.~ e
(] o ~ N
& 2, Q
= 20| R
N | S .
\\
‘\
=30 1 1 1 ] [

Size (¢ units)

Figure 8. Grain size distribution due to primary frag-
mentation events. Data are shown as the number of
fragments in each sieve class A(¢) normalized to an ar-
bitrary constant Nyr. Sieve unit ¢ is such that the
particle diameter is 2=% mm. Circles correspond to
rapid decompression experiments on viscous magmas
[Alibidirov and Dingwell, 1996]. Plain squares corre-
spond to the breakup of a Minoan pumice hit once by
a piston.
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from within the starting material and its amount de-
pends on the magnitude of the pressure drop.

We have made foaming experiments using an analog
material, a solution of acetone and Gum-Rosin [Phillips
et al., 1995]. This material shares many properties with
volatile-rich silicate melts, and in particular large in-
creases of melt viscosity as degassing proceeds. We
placed a sample of acetone-rich Gum-Rosin sample in
a vacuum chamber capped by a spherical glass cap and
decreased pressure. The liquid foamed and fragmented,
sending out small liquid droplets which were collected
on the glass cap. We measured their sizes and found a
lognormal distribution, which is typical of pure liquid
fragmentation [Ranz, 1959].

Alibidirov and Dingwell [1996] carried out sudden
decompression experiments on natural rhyolitic melts
at high temperature. Fragmentation was induced by
a shock wave propagating through the highly viscous
samples. In these experiments, the pressure drop and
the decompression rate were much larger than in the
foaming experiments just described. Using data from
two independent experiments, we have found power law
size distributions with values of 2.4 and 2.6 for the ex-
ponent (Figure 8). The number of fragments generated
in these experiments is rather small and these two val-
ues cannot be considered significantly different from one
another, and different from the 2.7 value obtained in
the piston experiment. These results suggest that the
fragment size distribution depends neither on the frag-
mentation mechanism nor on bubble size. These differ-
ent fragmentation experiments generate power law size
distributions with exponents smaller than 3, confirm-
ing the existing body of experimental data on all kinds
of “primary” breakup mechanisms. To account for the

characteristics of pyroclastic deposits, we therefore look

for “secondary” fragmentation processes.

4.3. Laboratory Experiments: Secondary
Fragmentation

“Secondary” fragmentation occurs, for example, dur-
ing milling and in gaseous atomizers. The gaseous at-
omizer is of particular interest because it shares many
characteristics with an explosive volcanic eruption. In
this device, liquid droplets are injected into a turbulent
gas flow and are broken up by turbulence, leading to
a power law size distribution with an exponent larger
than 3 [Ranz, 1959]. This result has been explained
by selective refragmentation [Dombrowski and Johns,
1963; Hinze, 1955; Reitz and Bracco, 1982; Silverman
and Sirignano, 1994]. Large droplets deform more eas-
ily than small ones, and hence refragment preferentially,
which acts to increase the proportion of fines in the pop-
ulation.

We have induced selective refragmentation in Minoan
pumice in the following manner. A large sample was
fragmented with a piston, as above. The resulting frag-
ment population had a power law exponent of 2.7 and
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was separated in three groups. The first group was re-
fragmented several times with the same piston. The size
distribution of the fragment population was evaluated
after each strike (Figure 9a). We found that, in this
case, the population always keeps the same power law
exponent of 2.640.1, which is equal to the initial value.
The reason for this is that, at each strike, each frag-
ment breaks up because of the large energy imparted by
the piston, implying that there is no preferential refrag-
mentation. The second group of pumice fragments was
placed in a grinder (a rapidly rotating chamber) from
which steel balls had been removed. The experiment
was stopped at successive times and the size distribu-
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Figure 9. (a) The power law exporent of fragments
produced by repeatedly dropping a piston onto the same
Minoan pumice. Data are shown as a function of the
number consecutive ”hits” by the piston. There is no
change because each hit breaks up all the fragments
present. (b) The power law exponent of Minoan pumice
fragments produced in a grinder (a rapidly rotating
chamber) as a function of time. In one experiment, frag-
mentation is induced by collisions between fragments as
well as against the grinder walls. In the other experi-
ment, a steel ball is added to the charge, adding a third
fragmentation agent.
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tion was determined as a function of time. The power
law exponent increased with time until it seemed to
reach a steady state value of about 4.2 (Figure 9b). In
athird and final experiment, we placed a small steel ball
in the grinder. We found the same trend of increasing
power law exponents, but the values were larger than in
the experiment without a steel ball. The time to reach
steady state was larger and the final exponent was also
larger (5.4 instead of 4.2). “Secondary” fragmentation
was therefore more efficient in this case, which suggests
that the power law exponent is sensitive to the energy
available in collision events.

The experimerits demonstrate that it is indeed pos-
sible to change a power law exponent from an initial
value smaller than 3 to a value larger than 3. Such
“secondary” fragmentation mechanisms may be called
“kinetic” because they involve the timescale of fragment
collisions. We now develop a simple analytical model to
illustrate how selective refragmentation can change the
value of a power law exponent.

4.4. Model of Selective Kinetic
Refragmentation

We first consider a “primary” fragment population,
described by a power law distribution. If a block of size
r' is fragmented, the resulting population is described
by

N(R>7)=g(r,r') = f(')r=P,
where f(r') is some function of the initial sample size r’/,

and D; is the ”primary” power law exponent. Function
f(r") is calculated using mass conservation:

(17)

'3 :f(r’)/ (=D;)r=Pi=1p34r, (18)
0

This integral diverges if D; is larger than 3.0 or must

be calculated over a finite range. Substituting for f(7/),

we obtain

Di-3 (19)

N(R>r)=g(nr) = Ty

(R>r)y=g(rr) = D; <r’) .
Here the size distribution of fragments depends explic-
itly on the initial sample size r’.

For refragmentation, the number of fragments of a
given size depends on the size distribution of “primary”
fragments as well as on the probability of refragmen-
tation. The critical ingredient is that this probability
depends on fragment size. The number of fragments of
size r at time ¢, dN(r,t), is the solution of [Cheng and
Redner, 1990]

OdN (r,1)

5 —a(r,t)dN(r,t)

fl
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where a(r,t) is the probability of refragmenting clasts
with size r at time ¢.

We look for aself similarsolution such that the power
law exponent does not depend on time, which corre-
sponds to the steady state regime of the grinder exper-
iments

AN =\ (=Dy) =21 ~1dr, (21)

where Dy is the final steady state exponent. For the
probability of refragmentation, we look for functions of
the following form:

a(r)=r°, (22)

where C' is an a priori unknown positive parameter.
Substituting for (19) and (21) in (20) at steady state,
we obtain

0]
pCH+Di-Dy-1 _ (Di _ 3)/ p/C+Di=Dy=1 0t (23)

T

Thisintegral converges if Dy > C+ D;. If this condition
1s met, we obtain

pC=Dy+Di _ ,C~Dj+D; D;—3
D; — Df + C’

(24)

~which implies that

Dy =3+C. (25)
This solution requires that Dy > C' + D;, implying that
D; < 3, which was our initial assumption. This sim-
ple argument demonstrates that the final exponent can
indeed be greater than 3, independently of the initial
exponent.

Solving for the refragmentation probability requires
a sophisticated model of fragment interactions and col-
lisions, which would be outside the scope of the present
work. The simplest hypothesis is that this probability
is related to the fragment cross section, that is, that

a(r) o< r?. (26)

This corresponds to C=2 and to a final exponent of
5, which is comparable to the steady state values of
the grinder experiments. The value of C' also depends
on the efficiency of collisions, which probably increases
with the size of impacting fragments. A final effect is
that, as their size goes down, particles are probably less
and less susceptible to breakage because they contain
fewer and fewer defects [Redner, 1990]. This may be in-
cluded in the probability function a(r). With highly
porous material such as pumices, additional,factors
come into play. With increasing D value, the amount
of continuous gas increases, as emphasized above. Frag-
ment collisions become less frequent, and the size dis-
tribution may evolve increasingly slowly towards the
asymptotic D value.
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5. Volcanic Fragmentation

We now piece together the constraints obtained on
the size distribution of pyroclastic populations and on
the nature of fragmentation processes and discuss im-
plications for volcanic flows.

5.1. Amount of Continuous Gas in the Volcanic
Mixture '

To calculate the amount of gas released for the true
fragment populations determined above, the extreme
fragment sizes are chosen to be 1 m (a fragment size
which has been found close to vent on several occa-
sions) and 1.5 pum. The latter value is compatible with
the 1 pm value commonly used for reconstructing de-
posits [Walker, 1973, 1981b], and the 1.42 pm value
proposed by Pyle [1989] from several independent ob-
servations. It is sufficient to consider a single bubble
size b. It is shown in Appendix B that results are not
changed appreciably by more complex bubble size dis-
tributions and are weakly sensitive to the mean bubble
size, provided it is chosen within a realistic range.

The total mass of a deposit is given by (15). The sizes
of the smallest and largest fragments, rmin and rmay,
differ by as much as 6 orders of magnitude, and hence
only one term on the right-hand side of this equation
dominates, depending on the sign of (3 — D). If D is
greater than 3,

Moy Tﬁﬁnp ) (27)
In this case, the population is controlled by the fine
fraction, implying that most of the gas gets released at
fragmentation. On the other hand, if D is less than 3,
the total mass is

3—-D

Mtot X Tmax -

(28)
In this case, most of the deposit is made of coarse frag-
ments, implying that a small amount of gas is released
at fragmentation. :

The fraction of gas released at fragmentation is given
in Figure 10 as a function of D for b = 10* m. For
D > 3.5, almost all the gas is released at fragmentation.
For D < 2.8, a negligible amount of gas is released. In
this latter case, the mixture of gas and vesicular frag-
ments is best described as a dense granular mixture.
Around the critical value of 3, small changes of the ex-
ponent induce extremely large variations of the amount
of gas released. Increasing the exponent from 3.0 to 3.5
acts to increase this amount from about 40% to 90% of
the available gas. “Complete atomization” is therefore
a reasonable approximation only for exponents larger
than 3.5, which is a relatively rare occurrence observed
only in fall deposits. As indicated by the laboratory ex-
periments, such large values of the power law exponent
are not achieved at fragmentation.
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Figure 10. Fraction of gas released at fragmentation
as a function of the D value of the size distribution of
magma fragments. The fraction of gas is calculated as
the ratio of the mass released (z,) to the total mass
of gas exsolved from magma (z,,,). Note that it varies
most dramatically when D is between 2.8 and 3.3.

5.2. Key Variables for Describing Pyroclast
Populations

In pumices there is alarge range of bubble sizes, and
bubbles sizes may vary from eruption to eruption [Cash-
man and Mangan, 1994]. To evaluate the error involved,
we have repeated the calculation of Figure 10 for two
extreme values of the mean bubble size, 1 mm and 10
wum (Figure 11). Differences between these calculations
are not negligible but are equivalent to changing the D
value by 0.1, which is within the range of uncertainty.
Polydispersed bubble populations can be treated using
the method of Appendix B and do not change the results
by more than 5% (Figure 12), which may be considered
negligible.

To describe the gas/fragment mixture after fragmen-
tation, one must therefore specify three parameters: the
D value for the power law size distribution and the sizes
of the smallest and largest fragments. If the power law
exponent is smaller than 3, the population is controlled
by large fragments and one might think that it is impor-
tant to accurately determine the largest fragment size.
This is not so because we are interested in the fraction
of gas released. Whatever the largest fragment is, it
is much larger than the average bubble size and hence
contributes a negligible amount of continuous gas. On
the other hand, if the power law exponent is larger than
3, the population is controlled by the small fragments.
In this case, the smallest ash particles, with radii less 5
pm, say, are smaller than the majority of bubbles, and
hence allow almost total gas release. It is therefore not
important to specify accurately the smallest fragment
size, as long as it is sufficiently small. Errors due to
uncertainties in extreme fragment sizes do not exceed
4+ 5%. We therefore conclude that the main parameter
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Figure 11. Fraction of gas released at fragmentation
as a function of the D value of the size distribution of
magma fragments, for three different values of the mean
bubble size. The larger the bubble size, the smaller the
fraction of gas which may be left within a fragment.

controlling the mass fraction of continuous gas is the
exponent of the power law size distribution.

5.3. Flow Behaviour of the Gas/Fragment
Mixture

At fragmentation, different flow regimes may ensue
depending on the volume fraction of continuous gas in
the gas/fragment mixture, noted «. Threshold values
separating the different regimes depend somewhat on
fragment shapes and size distributions [Chong et dl.,
1971; Chang and Powell, 1993; Ladd, 1994], and the
values quoted below must be considered approximate.
For « < 0.25 the fragments are almost packed. The
mixture is not a suspension and its properties are essen-

“tially those of the fragments, that is, a viscous liquid.
For intermediate values of a, between 0.25 and 0.75, the
mixture behaves as a “slurry,” with particle interactions
playing a key role. Suspension behavior, such that frag-
ments are freely suspended in the continuous gas phase
and interact only via discrete collision events, is not
achieved for o < 0.40 [de Kruif, 1990]. For o > 0.75,
fragment interactions affect weakly flow behaviour and
the mixture may be called “semidilute.” Finally, for val-
ues of o > 0.95, the dilute limit is reached, and the mix-
ture may be described using the “dusty” gas approxi-
mation [Marble, 1970], such that its dynamic viscosity
is equal to that for the pure gas phase.

In absolute values the quantity of gas released de-
pends on the total amount which is exsolved when frag-
mentation occurs. Here, for consistency with previous
studies, we fix the bulk volume fraction of gas avail-
able at fragmentation at the “conventional” value of
75% [Woods, 1995]. We note, however, that the follow-
ing points would be much stronger were we to use the
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smaller value of 60% recently suggested by Gardner et
al. [1996]. If the D value of the fragment population is
larger than 3 at fragmentation, more than 60% of the
gas present gets released, and «, the volume fraction of
the continuous gas phase in the mixture, is larger than
45%. This makes the mixture a suspension, albeit a
dense one. However, the experiments indicate that the
D value at fragmentation is less than 3. In this case,
less than 60% of the available gas gets released, and o
is less than 45%. The mixture is not far from packing
conditions such that most fragments touch one another.
In this case, refragmentation is inevitable.

5.4. Secondary Fragmentation in a Volcanic
Conduit

The experiments and theoretical considerations on
fragmentation have explored situations which are much
simpler than those of a true volcanic eruption. After
"primary” fragmentation, the mass fraction of contin-
uous gas increases due to refragmentation and gas ex-
pands because of decompression. In these conditions
the flow characteristics tend towards ”dilute” condi-
tions, such that the collision probability drops to very
small values. Two effects may contribute further in-
creases of the volume fraction of continuous gas. Vesic-
ular fragments may break up spontaneously due to bub-
ble expansion. Bubble overpressures are not sensitive to
fragment size [Kaminsk? and Jaupart, 1997], but one ex-
pects that small fragments with only a few bubbles do
not fracture easily: a limit case is provided by a clast
with only one bubble, for which bubble connection is

Power law exponent, D

Figure 12. Fraction of gas released at fragmentation
for two types of gas bubble populations. For an exact
calculation, the smallest bubble size, the largest bub-
ble size and the size distribution of fragments must be
specified. In the ” monodispersed” population, all bub-
bles have the same size. The "polydispersed” bubble
population is described by a power law (Appendix B)
and has the same mean bubble size.
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obviously 1mpossible. Thus this process is likely to in-
crease the proportion of fines in the fragment popula-
tion. However, it is hard to see how it may account for
the size distribution of the fine fraction, which has the
same D value than the coarse fraction. Additionally,
some vesicular fragments may be permeable and leak
some of their gas to the continuous phase. We argue
in Appendix A that both effects are not important in a
volcanic conduit.

6. Discussion

6.1. Characteristics of Pyroclastic Populations

The pyroclastic deposits studied in this paper have
three outstanding characteristics which may be sum-
marized simply using their D values. First, there is no
single D value for all the deposits. This may seem sur-
prising because, in all the industrial and natural frag-
ment populations referenced by Turcotte [1986], a given
fragmentation mechanism acting on given materialis as-
soclated with a single and specific value of the exponent.
However, we know that exponents larger than 3 cannot
be due to a single ”"primary” fragmentation event and
that they can be produced by selective refragmentation.
We therefore imagine fragments continuously colliding
and fragmenting in the volcanic flow, with the size dis-
tribution continuously evolving. Because of expansion,
the power law exponent gets “frozen” at various val-
ues smaller than the steady-state limit. Another way
of stating this is that a large range of D values and
values larger than 3 are two symptoms of the same re-
fragmentation sequence. Second, it is remarkable that
the histogram of D values for fall deposits has a sharp
cutoff at the value of 3.0 (Figure 7). With exponent
values smaller than 3.0, the amount of gas released at
fragmentation is a small fraction of the total available
(Figure 10), and such conditions are not in favor of
a sustained Plinian regime which requires a minimum
amount of continuous gas [ Woods, 1995]. A rigorous test
requires a calculation involving the mass discharge rate
and the initial amount of volatiles present in the melt,
and must be done for specific case histories. For space
reasons, this is developed in a companion paper. Third,
histograms for the pyroclastic flow and fall deposits are
not identical (Figure 7), and the flow exponents are sys-
tematically smaller than their fall counterparts. This is
consistent with fluid dynamical considerations, as it is
now well established that, all else being equal, pyro-
clastic flows are generated for smaller gas contents than
Plinian columns. Finally, we note that, amongst the 62
deposits studied, the smallest exponent value is 2.9 (Ta-
bles 1-3), which is larger than the experimental values
for ”primary” fragmentation.

We conclude that the systematics of D values for the
62 deposits studied are consistent with basic physical
constraints. Further, these systematics indicate that D
is a key variable for the dynamics of eruption.
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6.2. Fragmentation Sequence in Explosive
Volcanic Eruptions

Using the "above results, we may build a qualita-
tive model for the ascent of magma in an eruption
conduit involving three stages (Figure 13). The first
stage is “primary” fragmentation, such that D =~ 2.6:
this marks the transition from magmatic foam to dense
granular mixture. For such small D values the continu-
ous gas phase amountsto about 20% of the total volume
of gas present, and «, the volurne fraction of continuous
gas in the mixture, is only about 15%. The fragments
are therefore near packing conditions. The second stage
is a rheological transition, such that the mixture be-
comes a suspension, which occurs when « is larger than
about 40%. At constant D value, and hence for a con-
stant mass fraction of continuous gas in the mixture,
this requires a large amount of expansion. For an ideal
gas and isothermal decompression, pressure must de-
crease by a factor of 5 to go from o = 15% to o = 45%.
During this decompression, however, refragmentation
occurs and induces an increase of the D value. The
transition to suspension behavior may therefore be de-
fined in a more appropriate manner by a threshold value
for D, and we propose D = 3.0. The third stage is when
the fragment population stops evolving, which may be
reached before ejection into the atmosphere. It is only
at this stage that the mass fraction of continuous gas
in the mixture is set. In this framework, therefore, the
conditions for a Plinian plume or a pyroclastic flow may
in fact be established by refragmentation in the volcanic
conduit.

The above considerations on refragmentation intro-
duce time as a key variable and emphasize the different
effects of collision and decompression on the fragment
size distribution. The collision rate depends on the lo-
cal turbulence of the flow, which is related to the mean
vertical velocity. The decompression rate depends on
vertical velocity, which increases as the amount of con-
tinuous gas increases. The flow conditions and the size
distribution of fragments are therefore coupled. If the
decompression rate is large, expansion may limit the
extent of refragmentation and the D value may not in-
crease rapidly. Inthis case, the mixture of gas and frag-
ments erupting out the vent may have relatively small
D values and hence may not be dilute. The fact that
some pyroclastic flow deposits have D values of 3.0 or
less must be taken into account when debating whether
these flows were dilute or dense.

7. Conclusion

The grain size distributions of Plinian and pyroclastic
flow deposits follow power laws as do many other frag-
ment populations. Plinian populations stand out be-
cause they all have power law exponents larger than 3.
Such large values are explained by selective refragmen-
tation due to fragment collisions. During flow and de-
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Figure 13. Schematic representation of three important levels in the fragmentation sequence of

an explosive volcanic eruption.

compression in a volcanic conduit, the power law expo-
‘nent of the fragment population continuously increases
from an initial value of about 2.54+0.1. One must there-
fore speak of a “fragmentation sequence” instead of a
single fragmentation event. In the volcanic mixture,
the amount of continuous gas which carries fragments
in suspension is very sensitive to the power law expo-
nent of the size distribution. Thus in order to predict
eruptive behavior above the vent, it is not sufficient to
determine which fragmentation mechanism operates in
the volcanic conduit. One must also specify which size
distribution is generated and how it evolves during as-
cent towards Earth’s surface.

Appendix A: Permeability of Pumice
Samples

Gas bubbles within a fragment may be connected to
the exterior, in which case they contribute gas to the
”continuous” phase. Pumice samples are usually per-
meable when found in a deposit. This may be due to
cooling and quenching, which lead to the rupture of
the thin magma films encasing bubbles [Mungall et al.,
1996]. This may have been achieved earlier, however,
and one must assess when. This has been attempted us-

ing textural observations [Klug and Cashman, 1996], de-
terminations of the extent of oxydation reactions within
the matrix glass [ Tait et al., 1998], and theoretical cal-
culations of fragment evolution together with system-
atic investigations of pumice vesicularity [Gardner et
al., 1996; Kaminski and Jaupart, 1997].

One may argue that highly vesicular samples are not
stable and become permeable as soon as vesicularity
reaches a critical value of about 70%. This is not so
for all pumices, as shown by the occurrence of ”retic-
ulites” with vesicularities of up to 97% [Cashman and
Mangan, 1994]. Such extreme samples are commonly
produced by basaltic fire fountains and have been dis-
missed as unrepresentative of Plinian conditions. How-
ever, they have also been found in Plinian deposits from
phonolitic eruptions involving magmas of intermediate
viscosity [Gardner et al., 1996]. Such samples demon-
strate that, in turbulent volcanic flows, vesicular frag-
ments can expand to extremely large vesicularity values
without damage.

Inside pumice fragments, Klug and Cashman [1996]
found many interrupted vesicle walls with rounded edges
and contorted shapes, suggesting that permeability de-
veloped whilst magma was still liquid. Unfortunately,
this does not constrain the timing of bubble connection
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as the interior of vesicular fragments remains hot for
times which are large compared to the times for erup-
tion and expansion in the atmospheric column [Kamin-
ski and Jaupart, 1997]. Such internal textural features
are difficult to interpret in terms of bulk permeability
because of the large gradients of stress and temperature
which are set up in vesicular fragments [Kaminski and
Jaupart, 1997]. Bubble connection to the exterior is
made difficult by the presence of a dense outer shell at
the edge of pumices, where vesicularity is smaller than
in the interior [Gardner et al., 1996].

For typical magma compositions and eruption con-
ditions, one should expect pumice vesicularity to reach
values larger than 95%, and this is indeed achieved in
reticulites. Most pumices have lower vesicularity val-
ues, and the conventional explanation has been early
bubble connection [e.g., Sparks, 1978]. However, an al-
ternative mechanism is quenching during expansion in
the atmospheric eruption column [Thomas et al., 1994].
Quenching initially affects a thin rind at the edge of
fragments, but this is sufficient to halt expansion of the
whole fragment. Bubble connection and quenching are
not mutually exclusive and one must determine their
relative importances for the fragment population as a
whole. Bubble connection is an intrinsically probabilis-
tic phenomenon, and the answer must first involve a
guantitative analysis of expansion and quenching with-
out permeability development. This has been carried
out by Kaminski and Jaupart [1997], who were able
to explain the bulk characteristics of many Plinian fall
deposits. Their analysis does not account for a small
number of samples in these deposits, which have low
values of vesicularity. The conclusion is that the vast
majority of magma fragments become permeable late in
the eruption sequence, after cooling and ‘quenching in
the atmospheric column, and hence after ejection into
the atmosphere. This implies that the ”dispersed” gas
phase remains essentially trapped within fragments in
the volcanic conduit.

Appendix B: Amount of Gas Released
at Fragmentation

B1l. Monodisperse Bubble Population

Just after fragmentation, bubbles which have been
intersected by the fragmentation surface leave part of
their walls, and the outer edge of fragments is rough
and jagged. The fragment volume includes these pro-
tuberances. Because of surface tension, some of these
pointed bits may retract [Gardner et al., 1996]. We
neglect this and introduce two new variables: Sy , the
average cross section of a bubble at the fragment sur-
face, and V}, the average volume of gas of an intersected
bubble below the fragmentation surface (Figure 14).

If Ny is the number of bubbles disrupted by fragmen-
tation in a single clast, the volume of gas released by
Ny clasts is equal to
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Vout = Ny N V.

(B1)

We consider that bubbles are randomly distributed in a
fragment and initially assume that the fragment is much
larger than the bubbles. A straightforward calculation
shows that the curvature of the fragment surface can
be neglected. If the volume fraction of gas within the
bubbly magma is ¢, the surface fraction of gas on an
arbitrary plane cutting through the volume is also €
[ Underwood, 1970, p. 23]. This theorem is valid for a
large surface where many bubbles may be found and
does not apply to a small fragment. Here, however,
we are dealing with a large population of fragments,
and hence with a large cumulative area. For a single
fragment, the mean surface available for bubbles is

Sgas = e4mr? = NiSe. (B2)
From this equation the number of intersected bubbles
is given by

r2
Ny = e47r§—b. (B3)
Collecting terms, we find -
r? Y7 3
Vour _ €N 4:5% _3% (B4)
Vgas € Nf 57(7’3 r Sb

Bubbles with radius & can be intersected at various lev-
els. We call h the distance between the lowest point
in the bubble and the cutting plane (Figure 14), which
may vary from O to 2 b. S(h) is the area occupied by a
bubble at the fragment surface, equal to

S(h) = (2bh — R?). (B5)

The associated volume of gas which lies below the cut-
ting plane is

V(h) = g}ﬂ (3b — h) .

(B6)

Figure 14. Sketch of a bubble near the surface of a
fragment. The bubble radius is b. The volume of gas in
the spherical cap of depth h is released by fragmentation
and collects into a continuous gas phase.
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The mean intersected area is thus

2b
5=+

— 2 2
3 [, S(hydh =g’

(B7)

Similarly, the average volume of gas available below the
cutting plane is found to be

1 2b

- _ 2 3
Vo= g | Vibydh =g (BS)

Substituting for the various expressions in (B4), we find

Vout - 3b
= (B9)

which is half the upper bound derived in the main text
(equation (6)). This equation is obviously not valid for
fragments with radii smaller than 35, and one must use
a different analysis.

For a fragment which is not large compared to its
bubbles, the fraction of gas released depends on the ex-
act shape of the fragment and on the packing arrange-
ment of bubbles. The surface of the fragment has signif-
icant curvature and may not be locally approximated by
a plane. An accurate calculation would require elabo-
rate geometrical considerations but would not be really
useful for our purposes. We first estimate the smallest
fragment size such that (B9) applies, that is, such that
large number statistics apply. Pumices have been ex-
tensively sampled down to a size of 0.8 cm. These have

1 -“o—n--v’ -y

H \
: s |
' N
H S,
§ LR L LR YR LN )
o
s
o 0.1 === Reference
b = = = Upper bound
==senwwe [ ower bound
T T
0.1 1 10 100

r/b

Figure 15. Fraction of gas released by an individual
fragment as a function of size r normalized to the bubble
radius b. The fraction of gas is calculated as the ratio
of the mass released (zg,,) to the total mass of gas ex-
solved (zg4,,,). Three different approximations are used
for fragments which cannot be considered large com-
pared to gas bubbles, that is, such that »/b < 10. The
upper bound is such that these fragments release all
their gas. The lower bound corresponds to the other
extreme: these fragments release a fixed amount of gas
set equal to the value for »/b = 10.
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Figure 16. Fraction of gas released at fragmentation as
function of the power law exponent D of the fragment
size distribution for the three cases of Figure 15. Bubble
radius b is taken to be 10~=% m.

vesicularities and shapes which do not depend on size
[Houghton and Wilson, 1989; Gardner et al., 1996]. Us-
ing b = 10~* m, which is a typical average bubble size,
such fragments are at least 100 times larger than the
average bubble and can indeed be considered large com-
pared to the bubbles. We may extend this to fragment
sizes as small as 10 x b because the fragment/bubble
volume and surface ratios still take large values. We
know that a fragment which is smaller than a bubble
cannot retain any gas, and hence what is required is
an estimation procedure for small fragments with sizes
in the range from b to 10 x b. We use the fact that
the fraction of gas kept within a fragment decreases as
the fragment size gets smaller and calculate upper and
lower bounds (Figure 15). For the upper bound we as-
sume that fragments with radii less than 10 x b release
all their gas. For a lower bound we take the amount
of gas released by fragments with radii between 10 x b
and b to be equal to the amount for » = 10 x b. We
find that these two bounds differ by less than 5% (Fig-
ure 16), which is negligible. For reference, calculations
will be carried out for an intermediate model, using
(B9) down to » = 3 x b and assuming that all the gas
gets released for r < 3 x b (Figure 15). The accuracy of
this “reference” calculation is sufficient for our purposes
(Figure 16).

B2. Polydispersed Bubble Population

Consider a bubble with given radius b which extends
to depth h into a fragment. Variable h may vary from
0 to a maximum value hyax. If the bubble is smaller
than the fragment, hyax = 2b and hence quantities Sy
and V, are as above. If the bubble is larger than the
fragment, hnax = r and
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_ r2
Sy = (br - -§> , (B10)
3
— m 2 r
= (w1 B11
= 5 (%) B1)

In a bubble population with sizes ranging from a mini-
mum value by, to a maximum value by.x, the fraction
of bubbles with radius between b and b + db is called
dNy. The total area occupied by bubbles at the frag-
ment surface is

bma.x
drer? = / Sy dNy, (B12)
bmin

and the volume of gas trapped inside the fragment is

4 bmax
Vins (1) = gﬂr?’f - / Vo dNp. (B13)
bmin
We consider that the bubble population also follows
a power law distribution with an exponent B between 2
and 3 [Gaonac’h et al., 1996]. Accordingly, the number

of bubbles with radii a larger than b is
=P8

where 3 is a renormalization coefficient which must be
solved for. The area occupied by bubbles at the surface
of a fragment is equal to

=8 [ (=B)b=B-12nb%db

+ 8L (=B (b -5 ) b, (BLS)

Ny(a > b) (B14)

4rer?

from which we can extract § to evaluate the volume

of bubbles inside the fragment, Vi,;(r). Finally, the

total volume of gas preserved in a fragment population

characterized by a power law size distribution (13) is
Tmax

Vi, = / Vine (A (=D)r~P=1dr. (B16)

Tmin

The amount of gas which gets released is calculated

using the total volume of gas present

Vout = €§7T/ M=D)yr P=Y8dr — V. (B1T)
We take B = 2.7, bpin = 2.5 pm and bpyax=2.5 mm

(Figure 12). There is only a small difference with a
monodisperse bubble population with the same average
bubble size.
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