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Abstract—Spectroscopy has existed for more than three centuries 
now. Nonetheless, significant scientific advances have been 
achieved. We discuss the history of spectroscopy in relation to 
emerging technologies and applications. Advanced focal plane 
arrays, optical design, and intelligent on-board logic are prime 
prospective technologies. Scalable approaches in pre-processing 
of imaging spectrometer data will receive additional focus. 
Finally, we focus on new applications monitoring transitional 
ecological zones, where human impact and disturbance have 
highest impact as well as in monitoring changes in our natural 
resources and environment. We conclude that imaging 
spectroscopy enables mapping of biophysical and biochemical 
variables of the Earth’s surface and atmospheric composition 
with unprecedented accuracy. 
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I. INTRODUCTION 
Three centuries ago Sir Isaac Newton published in his 

‘Treatise of Light’ [1] the concept of dispersion of light. The 
corpuscular theory by Newton was gradually succeeded over 
time by the wave theory, resulting in Maxwell’s equations of 
electromagnetic waves [2]. But it was only in the early 19th 
century that quantitative measurement of dispersed light was 
recognized and standardized by Joseph von Fraunhofer’s 
discovery of the dark lines in the solar spectrum (1817) [3] and 
their interpretation as absorption lines on the basis of 
experiments by Bunsen and Kirchhoff [4]. The term 
spectroscopy was first used in the late 19th century and 
provides the empirical foundations for atomic and molecular 
physics [5]. Following this, astronomers began to use 
spectroscopy for determining radial velocities of stars, clusters, 
and galaxies and stellar compositions [6]. Advances in 
technology and increased awareness of the potential of 
spectroscopy in the 1960s to 1980s lead to the first analytical 
methods [7, 8], the inclusion of ‘additional’ bands in 

multispectral imagers (e.g., the 2.09-2.35 µm band in Landsat 
for the detection of hydrothermal alteration minerals as 
proposed by A.F.H. Goetz), as well as first imaging 
spectrometer concepts and instruments [9-12]. Significant 
recent progress was achieved when in particular airborne 
imaging spectrometers became available on a wider basis [13-
17] helping to prepare for spaceborne imaging spectrometer 
activities [18]. However, it lasted until the late 1990s until first 
imaging spectrometers were launched in space. However, true 
imaging spectrometers, satisfying the definition given in 
section II are still sparse nowadays (e.g., CHRIS/PROBA, 
Hyperion, MERIS). 

Today, technological advances in the domain of focal plane 
development, readout electronics, storage devices and optical 
designs, are leading to a significantly better sensing of the 
Earth’s surface. Improvements in signal-to-noise, finer 
bandwidths and spectral sampling combined with the goal of 
better understanding the modeled interaction of photons with 
matter will allow for more quantitative, direct and indirect 
identification of surface materials based on spectral properties 
from ground, air, and space. 

II. IMAGING SPECTROSCOPY 

A. Definition 
In literature, the terms imaging spectroscopy, imaging 
spectrometry and hyperspectral imaging are often used 
interchangeably. Even though semantic differences might exist, 
a common definition is: simultaneous acquisition of spatially 
coregistered images, in many, spectrally contiguous bands, 
measured in calibrated radiance units, from a remotely 
operated platform. 

Consequently, applying this definition results in 
quantitative and qualitative characterization of both the surface 
and the atmosphere, using geometrically coherent spectral 
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measurements. This result can then be used for the 
unambiguous direct and indirect identification of surface 
materials, water properties, and atmospheric trace gases, the 
measurement of their relative concentrations, subsequently the 
assignment of the proportional contribution of mixed pixel 
signals (e.g., spectral un-mixing), the derivation of their spatial 
distribution (e.g., mapping), and finally their evolution over 
time (multi-temporal analysis). 

B. Relevance 
Imaging spectroscopy has seen an exponential growth over 

the past 15 years in terms of referenced publications and 
associated citations (cf., Fig. 1). This is a good indication of the 
increasing relevance of this emerging technology. We use 
searches performed in altavista.com, and citations in 
scopus.com using combinations of keywords (e.g., 
hyperspectral, imaging spectroscopy, and imaging 
spectrometry) to illustrate the exponential growth. 
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Figure 1.  Internet based and citation database search for ‘imaging 
spectroscopy’ (1990-2005). 

A thematic separation of the search terms used in the above 
overview will be increasingly difficult in the future, since 
methods based on imaging spectroscopy are not exclusively 
applied in Earth observation, but also in space research [19], 
exobiology [20], neurosciences [21], chemometrics [22], 
amongst others [23, 24]. 

III. INSTRUMENTS 
Earth observation based on imaging spectroscopy has been 

transformed in less than 30 years from a sparsely available 
research tool into a commodity product available to a broad 
user community. Currently, imaging spectrometer data are 
widespread and they prove for example, that distributed models 
of biosphere processes can assimilate these observations to 
improve estimates of Net Primary Production, and that in 
combination with data assimilation methods, access complex 
variables such as soil respiration, at various spatial scales [25]. 
However, a lack of data continuity of airborne and spaceborne 
imaging spectrometer missions remain a continuing challenge 
to the user community. There is an emerging need to converge 
exploratory mission concepts (e.g., former ESA’s Earth 
Explorer Core Mission proposal SPECTRA [26]) and 
technology demonstrators (e.g., NASA’s Hyperion on EO-1 

[27]), and operational precursor missions (e.g., ESA’s CHRIS 
on PROBA [28]), towards systematic measurement and 
operational missions (e.g., ESA’s MERIS on ENVISAT [29], 
NASA’s MODIS [30] on Terra/Aqua). Despite the naming of 
MODIS, this instrument is not unanimously accepted being a 
true imaging spectrometer applying a rigorous definition of 
spectral band contiguity. 

Several initiatives proposing space operated Earth 
Observation instruments in these categories have been 
submitted for evaluation and approval (e.g., HERO 
(Hyperspectral Environment and Resource Observer, Natural 
Resources Canada, Canadian Space Agency), EnMAP 
(Environmental Mapping and Analysis Program (GFZ 
(Germany)), Flora (NASA GSFC proposal), FLEX (ESA Earth 
Explorer proposal), SpectraSat (Full Spectral Landsat 
proposal), ZASat (South African proposal (University of 
Stellenbosch)), HIS (Chinese Space Agency), etc.). However 
for the time being, airborne imaging spectrometer initiatives 
(e.g., [31, 32]) will continue to provide the majority of new 
instruments, before continuation missions for Landsat, MERIS, 
MODIS and others are realized. 

IV. TECHNOLOGY 
Imaging spectrometer instrument technology will profit 

from true spectroscopy focal plane arrays, with improved 
quantum efficiency, several readout ports, a rectangular design 
and consistent readout in the spectral domain [33, 34], 
eventually also being expanded to the emissive part of the 
spectrum. To achieve high spectral-spatial uniformity and high 
precision measurements advanced optical designs are required 
combined with enabling components (curved, high-efficiency 
dispersive elements [35, 36] and ultra-straight slits). Opto-
mechanical designs must focus on spectral and radiometric 
stability [37]. With stability, spectral, radiometric and spatial 
calibration [38, 39] can be readily established from the spectral 
features of the atmosphere as well as uniform/measured 
calibration targets on the Earth [40, 41]. Reprogrammable on-
board logic and implementation of (lossless) data compression 
[42, 43] will help to overcome the downlink capacity problems. 
Additional reduction in downlink volume can be realized by 
combining onboard processing capability with non–traditional 
data reduction techniques such as cloud screening, band 
aggregation (when appropriate), and employing lossy 
compression over “stable” targets (e.g. Sahara Desert, 
Makhtesh Ramon) some of the time. With focus on these 
technology areas, spaceborne imaging spectrometers may be 
developed with the required instrument performance. Multiple-
sensor approaches as well as operating imaging spectrometers 
in the multiangular and thermal domain will further broaden 
the field of applications. 

V. (PRE-)PROCESSING 
The data processing chain will improve with advanced last-

generation computing environments, such as parallel and grid 
computing, as well as distributed computing approaches that 
profit from local (user) resources [44, 45]. These advances will 
increase efficiency in processing data and meet timeliness 
needs. Preprocessing imaging spectrometer data is adopting 
multi-instrumented approaches, including improved estimation 



of the composition of the atmosphere which allows retrieval of 
surface reflectance and ultimately the derivation of highly 
accurate Albedo products (blue/white-sky Albedo (BHR); 
black-sky Albedo (DHR)) [46]. Classification approaches are 
also changing from hard classifiers towards approaches of soft 
classifiers based on expert systems [47], Support Vector 
Machines [48], Markov Random Fields (MRF) for sub-pixel 
mapping [49], and image change detection and fusion to full 
expert system spectral analysis [50]. Further  morphological 
approaches for joint exploitation of the spatial and spectral 
information available in the input data will be explored [51-
53]. There is a trend towards establishing integrated systems 
solutions supporting data assimilation [54]. These solutions 
will provide scalable approaches, allowing the integration of 
multiple data sources. Data assimilation will further advance 
solid coupling of physical models, which link soil-vegetation-
atmosphere-transfer (SVAT) models to state space estimation 
algorithms [55]. Spectroscopy will be increasingly integrated 
into a multidisciplinary research environment, complemented 
by in situ sensing. Networks of in situ sensors exist already 
(e.g., FLUXNET), and with telecommunication technologies 
its increasingly feasible for these networks to achieve (near) 
real time integration of heterogeneous sensor webs into the 
information infrastructure [56]. 

VI. APPLICATIONS 
Emerging applications in imaging spectroscopy will not 

only focus on regional, national or global scales but are also 
needed to monitor transitional zones, in particular ecotones, 
(e.g., ecosystem-, communities-, or habitat boundaries) like 
tundra – boreal forest and forest – heathland, etc., where much 
of the pressure for change in terms of climate-related 
disturbance and human impacts are identified. In managed 
ecosystems the improved precision is a key economical factor, 
contributing to better yield estimates as well as use of high 
resolution spectroscopy for species identification and mapping 
[57-59]. 

In both managed and unmanaged ecosystems the 
spectroscopy focus is on detection and identification of plant 
succession, phenology, plant functional types [60], and on 
monitoring invasive species [61, 62]. Biochemical applications 
concentrate on the retrieval of moisture content, C, N, and 
potentially P cycles, and connecting soil, leaf, and plant 
functioning with atmospheric fluxes using quantitative 
approaches. The pigment and photosynthetic system of 
vegetation is of increasing interest, that will finally allow 
coupling models from molecules to leaf [63], plant and canopy 
scales [64, 65]: Imaging spectroscopy for molecular ecology is 
an emerging research topic. 

The sound retrieval of combined atmospheric and 
vegetation properties will further allow refining 3D radiative 
transfer approaches in particular in partly cloudy atmospheres 
[66, 67]. Quantitative physically-based soil models are still to 
be developed taking into account the full spectral coverage 
(e.g., reflective and emissive) currently available, although 
many of the basic spectral interactions have long been a focus 
of interest [68, 69]. In contrast to the soil, the characterization 
of snow optically equivalent grain size is currently only 

possible with the required accuracy using spectroscopy [70, 
71]. 

Studies over the last decade have shown that imaging 
spectrometry is the ideal tool to separate the complex optical 
properties of inland waters and the coastal ocean [72, 73].  
Particularly when the bottom is imaged the scene is very 
complex and algorithms that use the full spectral information in 
the imaging spectrometer data are needed to solve the three 
variable problem and provide information on bathymetry, 
bottom type and water column optical properties [74-76]. 

VII. CONCLUSIONS 
Earth Observation related imaging spectroscopy has 

significantly gained in importance over the past 30 years. 
Advances in sensor technology, electronics, and (pre-) 
processing have led to the development of a suite of new 
applications.  

Imaging spectroscopy enables biophysical and biochemical 
variables of the Earth’s surface and atmospheric composition to 
be mapped with unprecedented accuracy.  In addition to this, 
our quantitative understanding of photon-matter interactions 
has been significantly enriched by the opportunity to look at 
simultaneous acquisition of many, contiguous spectral bands.  

Practically, to achieve new success requires improved data 
quality and wider availability of consistent remote sensing 
observations to the user community. Secondly, broader 
availability of high-performance computing resources is 
needed to run quantitative, physically based models. 

We have demonstrated in this paper the development of 
significant new fields of technology and applications and we 
identify potential near-term advancements. However, the 
imaging spectroscopy community has to increase its efforts to  
convince relevant stakeholders of the urgency to acquire for the 
Earth, continuous highest quality imaging spectrometer data for 
extended periods of time. The observed trends indicate that this 
need is becoming better understood and seen as essential for 
the sustainable development of our resources and the protection 
of our environment. 
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