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ABSTRACT

An improved version of the SAIL model which includes the hot spot effect and the spectral variation of
vegetation reflectance is used to retrieve canopy biophysical parameters from visible and near infrared
radiometric data. The leaf mesophyll structure, the chlorophyll a+b concentration, the leaf area index, the mean
leaf inclination angle and the hot spot size parameter are determined by inversion of the coupled
PROSPECT+SAIL model. Four different optimization methods (Quasi-Newton, Marquardt, Simplex, Genetic
Algorithms+Quasi-Newton) are tested with several kinds of data (synthetic data and airborne data acquired
with the CAESAR sensor) and compared in terms of accuracy and computation time.
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INTRODUCTION

The interpretation of optical remote sensing data for agricultural and ecological applications is still
problematic. A classical approach involves vegetation indices built from reflectance values acquired in the red
and near infrared by spaceborne sensors. The development of a new generation of instruments capable of
measuring the spectral radiance at several viewing angles may be accompanied by new methods of
interpretation. Among these, the inversion of physically-based reflectance models appears very promising
because it allows to separate the influence of surface variables on the measured radiometric signal (Flasse,
1993). Estimating properly canopy biophysical variables from reflectance measurements implies first an
appropriate model and second an appropriate inversion procedure!

In an inversion perspective, the choice of the model is governed by a certain number of rules. Remote
sensing, as many scientific disciplines, uses modelling which consists in creating an abstract and reduced
version of reality. If we use a sufficiently high number of parameters, it is clear that we can always construct a
mathematical model describing any situation. But obviously that is not the real problem: the challenge consists
in constructing a model which does not rely too heavily on mathematical hypotheses. Thus there is a conflict
between a strict adherence to empirical data, commonly called a fit, and the quantity of parameters used in a
model: a lot of parameters may provide a good fit but also imply a complicated model. When inverting them,
best models are those which make a compromise between a few parameters and a good fit (Thom, 1983).
However this condition is not sufficient since the description of canopy reflectance with mathematical model
leaves aside the physical principles governing the reflectance. The model parameters must correspond to
quantities measurable in the field and interpretable in terms of physical and biological properties. Finally, due
to the great variability of plant canopies (homogeneous, row, sparse or mixed crops), it is perhaps futile to try to
build a universal model applicable to complex media (Pinty and Verstraete, 1992). Different models have been
inverted to extract information on vegetation from bidirectional (Goel and Thompson, 1984; Otterman, 1990;
Pinty et al., 1990; Kuusk, 1991a; Deering et al., 1992), spectral (Schmuck et al., 1993; Baret and Jacquemoud,
1994), or both bidirectional and spectral (Kuusk, 1994) reflectance measurements.

According to the method of least squares, inverting a canopy reflectance model consists in
determining simultaneously the values of the parameters of the model which minimize the distance between the
measured and the simulated data. For this purpose, one defines a merit function ∆2=Σ[Rmes-Rmod(P)]2 where
Rmes is the measured reflectance and Rmod(P) the reflectance modeled with the set of parameters P influencing
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the propagation of light in the canopy. The inversion problem reduces to minimizing ∆2. In most cases, the
complexity of models prevents an analytical inversion so that numerical methods are required. There are a
number of ways of achieving it. Search strategies refer to a variety of algorithms whose performances depend
on many factors closely linked to the method of search but also to the model to be inverted. A typical
recommendation should be to try several of them; this may result in excessive computation time and is bluntly
unrealistic when thousands of inversions have to be performed, for example on pixels of a remote sensing
image. According to the literature, it appears in practice that the choice of the optimization method is above all
determined by the availability of an inversion routine in a mathematical library (IMSL, NAG, SAS,...) and
rarely guided by criteria of convergence, reliability, accuracy or computation time. These criteria have been
used in Renders et al. (1992) to compare different optimization methods to invert a canopy bidirectional
reflectance model with synthetic data.

In this paper, we make an attempt to apply these methods to real conditions. We first analyze the
performance of optimization methods with "noisy" synthetic data. Secondly, we use these methods with real
data from the CAESAR (CCD Airborne Experimental Scanner for Applications in Remote Sensing)
multispectral sensor for which radiometric data and some of the associated ground data were available.

1 - DESCRIPTION OF THE MODEL AND THE MINIMIZATION METHODS

1.1. The PROSPECT+SAIL Model

PROSPECT (Jacquemoud and Baret, 1990) is a radiative transfer model which simulates the leaf reflectance
and transmittance from 400 to 2500 nm as a function of the leaf mesophyll structure parameter N, the
chlorophyll a+b concentration Cab (µg cm−2), and the water depth Cw (cm). For given solar θs and viewing θo

zenith angles, and a given relative azimuth ϕo angle, SAIL (Verhoef, 1984, 1985) calculates the canopy
bidirectional reflectance using leaf optical properties, soil reflectance, and canopy architecture; the latter is
represented by the leaf area index LAI, the mean leaf inclination angle θl, and the hot spot size-parameter Sl

defined as Sl=L/H where L is the horizontal correlation length which depends on the mean size of the leaves
and on the shape of the leaves, and H is the canopy height (Kuusk, 1991b). The association of the two models
permits the simulation of canopy spectral reflectance for any configuration of measurement. By combining
these spectra to the three CAESAR (Looyen and Dekker, 1991) gaussian filter functions centred on 550 nm (δλ
=30 nm), 670 nm (δλ=30 nm), and 870 nm (δλ=50 nm), we can reproduce the equivalent reflectance measured
by this sensor (Figure 1). As these bands are outside the water absorption wavelengths, N, Cab, LAI, θl, and Sl

are the five independent variables of  the PROSPECT+SAIL model that characterize the physical and biological
properties of the plant canopy. The soil reflectance is assumed to be known: Figure 1 shows the spectral
reflectance of the clayey soil we selected in this paper.

Figure 1. CAESAR spectral bands superposed
on the reflectance spectra of the clayey soil used
for the simulation study (---) and the bare soil
selected in the Flevoland site for the application
study (…). The typical reflectance spectrum of
a plant canopy is also provided ( ).

1.2. The Minimization Methods

There are various kinds of optimization methods, often classified following their strategies of search:
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1. The search space is explored using a single point. The method exploits the local information (gradient) to
find a better next point (e.g., Quasi-Newton and Marquardt methods).

2. The search space is explored using a family of points. The method exploits the relative order between the
candidate points to drive the search in a better direction (e.g., Simplex method).

3. The search space is explored using a population of points. The method identifies the subdomain in which
the global minimum is located (e.g., Genetic Algorithms method).

Four minimization methods have been tested in this study: Quasi-Newton (QN) and Marquardt (MQ)
often used in least squares minimization, Simplex (SP), and a coupled method Genetic Algorithms + QN (GQ).
Very briefly, the QN method (Gill and Murray, 1972) minimizes, at each iteration, a quadratic approximation
of the merit function ∆2. We used here the routine E04JAF of the NAG library. The MQ method (Marquardt,
1963) combines the best features of the gradient search (steepest descent) with a linearization of the fitting
function (Taylor's expansion). The HAUS59 routine (Roux and Tomassone, 1973) was used. Instead of starting
from a single point in the p-dimensional search space, the SP method (Nelder and Mead, 1965) considers a
geometrical figure consisting of p+1 points, the simplex. Through a sequence of elementary geometric
transformations (reflection, contraction, and extension), the initial simplex progresses in parameter space until
it surrounds the minimum. We used the routine E04CCF of the NAG library. Finally, the GQ method (Renders
et al., 1992) combines the explorative qualities of Genetics Algorithms with those of exploitation of the QN
method; Genetic Algorithms (Goldberg, 1989) is a global search method based on an analogy with the process
of natural selection and evolutionary genetics; in the coupled method, Genetic Algorithms create generations of
points while QN drives the selection of individuals. The GQ method used in this paper is the Lamarck-inspired
of Renders et al. (1992).

It is not the intention of this paper to describe in detail the mechanism of these optimization
methods; the reader is referred to the above references for more information. However, several points are
worthy of note: these algorithms only require function evaluations (no analytical derivative) which makes them
easy to use. In order to avoid function evaluations at infeasible points, they were bounded according to the
domain of applicability of the model parameters: 1<N<2.5, 1<Cab<100 µg cm−2, 0.1<LAI<10, 5°<θl<85°, and
0<Sl<1. When required, the initial guesses have been fixed to N=1.75, Cab=50.5 µg cm−2, LAI=5.05, θl=45°,
and Sl=0.5. Note that one of the difficulties which may arise when inverting the model is that there may be
more than one local minimum for the merit function within a reasonable range of values for the parameters;
while the first three strategies (QN, MQ, SP) are likely to provide local minima, GQ is assumed to identify the
global minimum of the merit function.

2 - EXPERIMENTATION

2.1. Synthetic Data

In order to compare the different methods, a number of inversion procedures were performed using reflectances
generated with the PROSPECT+SAIL model. Five surfaces representing five different vegetation canopies have
been defined by varying the model parameters (Table 1).

Table 1. Canopy parameters used to simulate
the synthetic reflectances.

For each surface, three types of data set were built with n=6, 9, and 27 reflectance values. These data sets
respectively correspond to 2 (0°/+52°), 3 (0°/±52°), and 9 (0°/±25.8°/±45.6°/±60°/±72.5°) viewing angles
distributed in the principal plane (ϕo=0°) for a constant solar zenith (θs=40°) and the three CAESAR
wavebands. The first two situations refer to the nominal looking angles of CAESAR, the third one to the
nominal looking angles of the MISR (Multiangle Imaging SpectroRadiometer) instrument (Diner et al., 1991).

Surface N Cab LAI θl Sl

A 1.28 36.6 3.46 27.7 0.77
B 2.14 5.7 2.00 54.9 0.48
C 1.65 62.2 0.54 79.9 0.24
D 1.41 25.5 5.62 10.3 0.36
E 1.07 16.6 1.10 64.3 0.16
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In the view of being close to a real context where measurements are contaminated by noise due to the
instrument and to external conditions, a random noise component (gaussian distribution of zero mean and
variance σ=0.01)  was added to the reflectance values and this operation was repeated 50 times. In total we
analysed the results of 5 surfaces × 3 data sets × 50 noise × 4 optimization procedures: that is to say 3000
inversions! The inversion of the PROSPECT+SAIL model consists in determining by iterations the set of
parameters P=(N, Cab, LAI, θl, Sl) which minimizes ∆2 defined as:
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where Rmes is the measured and Rmod the modeled canopy reflectance. The summation is over the 3 CAESAR

channels (λ i) and the n viewing angles (θj). The criterion used to stop the inversion is to assume convergence if
the relative change occuring between two successive iterations is less than some prescribed quantity. The
optimization methods have been compared in terms of accuracy and computation time: the accuracy, distance
from the solution to the global minimum, is assessed by the Error defined as:
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where pi and pi
* are respectively the normalized values of the real and fitted parameters. The computation time

(Cntr) can be defined as the mean number of calls to the function to be minimized.

QN MQ SP GQ
data set surface Error Cntr Error Cntr Error Cntr Error Cntr

n=6 A 0.1899 920 0.3524 132 0.1166 327 0.6066 2354
B 0.1770 300 0.1950 104 0.1235 363 0.1874 1319
C 0.2464 786 0.2175 239 0.1326 226 0.0810 2433
D 0.2571 1131 0.3476 635 0.1767 275 × ×
E 0.0949 321 0.3965 163 0.2200 378 × ×

n=9 A 0.0804 302 0.0467 82 0.1302 327 0.2756 1239
B 0.0135 244 0.2231 65 0.0276 381 0.0135 1082
C 0.0049 233 0.0049 61 0.0049 237 0.0046 968
D 0.1539 550 0.3281 325 0.1925 356 × ×
E 0.0014 188 0.0324 67 0.0247 477 × ×

n=27 A 0.0215 192 0.0214 62 0.0218 378 0.0215 977
B 0.0022 193 0.1458 64 0.0129 351 0.0022 979
C 0.0015 244 0.0015 54 0.0015 275 0.0012 917
D 0.0281 244 0.0281 59 0.0540 420 × ×
E 0.0004 173 0.0004 59 0.0007 407 × ×

Table 2. Accuracy (Error) and computation time (Cntr) as determined for the different study cases (values are
the average outputs of 50 noise-disturbed inversions). For each data set and each surface, the best performances
in terms of Error and Cntr have been printed in bold.

From a general point of view, it emerges from Table 2 that, whatever the method, the more data values
available the higher the accuracy. The computation time follows the opposite trend for QN, MQ, and GQ but it
seems to be rather constant for SP. These two criteria are also dependent on the type of surface: for instance,
inversions performed on surfaces A and D which correspond to dense and planophile canopies (high LAI and
low θl values) are the less efficient; this is not surprising because both visible and near infrared reflectances aim
at saturation in such conditions. One can also notice great Error's for QG with surface A: a detailed analysis of
the fitted parameters shows that N, θl, and Sl are rather far from their actual values even if canopy reflectances
are well reconstructed by the model. As already observed by Jacquemoud (1993) on reflectance spectra, it
means that different sets of parameters can account for almost similar surfaces. Let us compare now the
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different optimization methods for the same data set: no real trend can be observed for the accuracy; on the
other hand, there are great disparities in the computation time. MQ is on average the fastest method, at least 3
times faster than QN, twice faster than SP, while GQ takes far more computation time. These results are
consistent with simulations of Renders et al. (1992) mainly performed on "clean" synthetic data.

In conclusion, the choice of an optimization method may depend on the priority given to the solution
(accuracy or computation time). Concerning the accuracy, QN and GQ are the most outstanding when the
number of data is much greater than the number of parameters, SP when only few measurements are available.
Concerning the computation time, MQ emerges as the winner of this comparison for almost all the cases.

2.2. Airborne Data

In order to test the applicability of such optimization methods on real remote sensing data, measurements
acquired in Flevoland (The Netherlands) during the 1991 Mac Europe Campaign have been investigated.
Several CAESAR images were recorded on three dates during the growing season (July 4th, 23rd, and August
29th 1991) for several crops but, due to the perfect atmospheric conditions observed on July 4th, only data
acquired at that time have been analysed. We selected fives differents crops (peas, sugar beet, wheat, onions,
and potato) for which radiometric and ground measurements were available (Büker et al., 1992a, 1992b). To
create angular variability on the reflectance, two images of the same target were obtained in down-looking
mode (θo=0) and in forward-looking mode (θo=52°). In fact, this latter angle is a nominal value only valid for
the near infrared band; the viewing angles in the green and red are respectively 45° and 59° but, due to the low
reflectance levels in these two bands and to the non-significant variation of the reflectance induced by a 7°
variation of θo outside the hot spot region, we used the nominal value. At flight time, the solar zenith angle θs

was 36.1° and the relative azimuth angle ϕo (angle between solar plane and forward-looking plane) estimated
at 7.4°. The calibration of CAESAR was performed by using reference targets in the field (Büker et al., 1992b).
Since plots were not too distant, we assigned to them the same soil spectral reflectance (Figure 1) measured in
the field during the experiment. Although soil roughness may induce great variations of reflectance from one
measurement configuration to another, we assumed that soil reflectance was lambertian.

As for the theoretical study, inversions were performed on each surface using QN, MQ, SP, and QG.
Let us introduce the root mean square error of the fit (RMSE) defined as (∆2/n)½ where n is the number of data
points (n=6): RMSE gives an information on how well the calculated canopy reflectances (using the model and
the estimated parameters values) compare with the corresponding measured values. The fitted parameters, the
computation time (Cntr), and RMSE's are presented in Table 3.

surface method N Cab LAI θl Sl Cntr RMSE
peas QN 1.00 51.7 1.03 43.5 0.05 135 0.0081

LAI≈1 MQ 1.41 36.4 0.80 39.3 0.05 177 0.0184
SP 1.00 51.7 1.03 43.6 0.05 350 0.0081
GQ 1.00 51.7 1.03 43.5 0.05 948 0.0081

sugar QN 1.00 59.5 2.84 42.8 0.05 174 0.0116
beet MQ 2.50 35.1 1.59 20.7 0.05 243 0.0253

LAI≈2 SP 1.02 59.1 2.81 42.5 0.05 489 0.0116
GQ 1.00 59.5 2.84 42.9 0.05 951 0.0116

wheat QN 2.50 79.2 4.93 61.3 0.05 446 0.0069
LAI≈2-5 MQ 2.50 74.3 6.06 62.6 0.05 116 0.0114

SP 2.48 79.5 4.80 61.0 0.05 260 0.0070
GQ 2.50 79.2 4.93 61.3 0.05 1041 0.0069

onions QN 1.00 58.8 2.64 45.7 0.05 156 0.0126
LAI? MQ 1.90 38.8 2.16 46.9 0.05 122 0.0188

SP 1.00 58.8 2.64 45.7 0.05 441 0.0126
GQ 1.00 58.8 2.64 45.7 0.05 938 0.0126

potato QN 1.77 73.5 10.0 39.6 0.07 302 0.0129
LAI>5 MQ 1.86 62.8 9.94 30.9 0.05 97 0.0148

SP 1.60 74.6 8.45 41.7 0.09 452 0.0130
GQ 1.77 73.5 10.0 39.6 0.07 1108 0.0126

Table 3. Inversion of the PROSPECT+SAIL model on CAESAR data.
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One can immediately notice that QN, SP, and GQ provide similar results in terms of retrieved parameters and
the lowest RMSE's indicate the best reconstruction of the measured reflectances; MQ systematically finds other
solutions and seems to be less efficient. QN and GQ have the best RMSE but QG requires much more
computation time. In the absence of precise information on the measured biophysical characteristics of these
canopies, it is somewhat difficult to interpret this difference we did not note when running inversions with
synthetic data.

Two parameters out of five (N and Sl) keep the value of the lower or upper bounds, whatever the
method. This may mean that the measured reflectances do not incorporate enough variability due to these
parameters. Jacquemoud (1993) already pointed out that the leaf mesophyll structure parameter N had little
influence on canopy reflectance because the effect of a varying leaf reflectance was partly compensated by the
varying leaf transmittance. As for the hot spot size parameter Sl, measured reflectances are too few and far from
the hot spot region to permit its good estimation. To illustrate that point, we used the parameters estimated by
the QN method to calculate the directional reflectance of three surfaces (peas, wheat, and potato) as a function
of the viewing zenith angle θo (Figure 2).

Figure 2. Comparison between the directional
reflectances measured over three different patches (a →
peas, b → wheat, c → potato) at the three CAESAR
bands (green → circle, red → plus, near infrared →
star) and those modeled with the PROSPECT+SAIL
model using optimally fitted parameters. The
measurement configurations are θs=36.1° and ϕo=7.4°.

Therefore, in future inversions in such experimental conditions it may be better to fix the value of these
variables in order to avoid conflict with other variables and to save time in the inversion procedure. With
regard to the other 3 parameters, retrieved values are generally consistent from one optimization method to
another. Unfortunately, the ground truth was only available for the leaf area index and we had no available
measured values of Cab and θl with which to compare the inversion findings. One can see that fitted LAI's
globally agree with measured values (first column of Table 3). Fitted chlorophyll a+b concentrations are those
of plants in good health and seem quite reasonable for the studied crops. It is also significant to note that the
leaf orientation estimated for the wheat crop indicates vertical leaves, and more horizontal leaves for the other
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crops which is the actual situation. Moreover, values retrieved for the sugar beet correspond to those cited in
the literature for this particular crop (Baret and Jacquemoud, 1994). In the light of these results, little a priori
guidance can be given as to the quality of the solution found by the nonlinear optimization alrorithms.

CONCLUSION

This study analysed different methods for the inversion of a canopy reflectance model, the PROSPECT+SAIL
model, which simulates both the spectral and directional variation of vegetation reflectance. Comparisons were
performed both on "noisy" synthetic data and airborne CAESAR data in terms of accuracy and computation
time. It appeared that the experimental conditions had a great influence on the performances of the different
methods and that the choice of the method depended on the priority given to the solution (accuracy or
computation time). However, results obtained with synthetic data showed the pertinence of such an approach.

This first attempt to retrieve canopy biophysical characteristics by inversion of a radiative transfer
model on real airborne remote sensing data was indeed very conclusive in the sense that the problem was very
complex and that the reflectance measurements on which inversions have been performed did not represent an
optimal sampling for this application. In this study, we allowed all five parameters to vary freely: due to the
lack of measurements in the hot spot region and the low canopy reflectance sensitivity to the leaf mesophyll
arrangement, it was not possible to provide a good estimate of the N and Sl parameters. It would be interesting
in the future to fix these two parameters at their roughly measured values and to perform again new inversions.
Be that as it may, since no guarantees can be given that a particular inversion method always work, it is
necessary to check the computed solution even if the routine reports success.

Finally, this work is worthy to be continued with other field data sets and other experimental
instruments. The development of airborne sensors such as ASAS (Advanced Solid-State Array) or POLDER
(Polarization and Directionality of the Earth's Reflectance) which prefigure spaceborne instruments
(respectively MISR and POLDER) capable of acquiring radiance measurements of the Earth surface both in
several wavelengths and under several viewing angles, offers the possibilities to test these relatively new
methods to extract surface properties from remote sensing data.
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