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ABSTRACT 
 
Canopy height and canopy cover are two important biophysical 
variables in forest characterization. As far as airborne laser 
scanning (ALS) studies is concerned, canopy height has been 
mapped at a high spatial resolution through canopy height models 
(CHM). Conversely, canopy cover had been computed at a coarser 
resolution (plot-level) by means of penetration rate metrics (PRM). 
In this work we present a method dedicated to compute single 
strata canopy cover at a spatial resolution similar to the CHM. 
Vegetation density maps are interpolated from the ALS point cloud 
pattern using a novel method based on the kernel density 
estimators (KDE). We developed an automatic variable-bandwidth 
approach that accommodates for both the point cloud density 
variability inherent to any ALS survey and the shading effect 
induced by taller canopy on laser beams. Results are compared 
with the PRM approach.  
 

Index Terms— airborne laser scanning, forest, canopy cover. 
 

1. INTRODUCTION 
 
Single strata canopy cover is an important biophysical variable 
commonly used to assess the volume and spatial distribution of 
vegetation in forest ecosystems. Therefore, it is crucial for many 
process-based ecological and biochemical models such as biomass 
stocks estimation, fuels distributions or biodiversity assessment [1].  
Contrary to both optical and radar imagery, small-footprint ALS 
systems are able to stratify the forest structure allowing to 
characterize single strata such as overstory, understory and ground 
vegetation. It is an active remote sensing technique that emits 
successive laser beams providing direct distance measurements 
between a moving platform and the earth surface [2]. Depending 
on the nature of the target, a single laser pulse emission may 
induce several backscattered echoes. Therefore, the laser beams are 
able to penetrate down into the forest canopy layers providing 3-D 
point cloud that is a discrete model of the forest structure.  
However, there is no study assessing the ALS reliability to derive 
single strata canopy cover. Former works either estimated canopy 
cover without stratifying vegetation structure or focused on a 
single layer such as the overstory [1, 3] or the understory [4]. 
There are two main approaches to derive canopy cover from ALS 
data: PRM and the grid-based methods. The first approach 
compares the number of ALS echoes corresponding to the stratum 

of interest, e.g. the overstory, to the number of echoes that lie 
below it. The more echoes gathered by a given strata the denser the 
canopy cover. However, this method is biased on plots that are not 
located directly below a flight line [3]. In fact, laser beams emitted 
with no near-vertical scan angles do not measure vegetation 
vertically, which affects the proportion of echoes between the 
stratum of interest and the area vertically below it. To minimize 
this effect, researchers have been using only the echoes derived 
from laser beams emitted with near-vertical scan angles, e.g. scan 
angles less than 15º [1]. However, measurements obtained from 
different perspectives can provide additional information on 
vegetation structure.  
Conversely, grid-based methods are not biased with respect to 
echoes issues from laser beams emitted with large scan angles. 
Echoes are either projected or interpolated into a binary image with 
a given resolution. The canopy cover is calculated through the ratio 
of pixels with data to those with no-data. The success of this 
approach highly depends on the selection of the image resolution. 
A coarse one leads to the “horizontal expansion” of vegetation 
features and consequently to an over-estimation of the canopy 
cover. On the contrary, a finer image resolution leads to its under-
estimation: many pixels corresponding to the areas within the 
outermost perimeter of crowns contain no-data due to the lack of a 
corresponding ALS measurement. In such a case, results can be 
improved by applying image processing techniques such as 
morphological operators, e.g. openings and closings. The goal is to 
minimize the canopy cover under-estimation by eliminating 
“lakes”, “gulfs” and “channels” present within the crowns 
perimeters. However, the filter size used in the procedure, i.e. the 
structuring element size, is critical. So far, it has been tuned 
manually. Moreover, due to the point cloud density variability 
inherent to any ALS survey, a static morphological operator size 
might not be optimal to deal with a single study area [1]. 
In this work we propose a novel method for canopy cover 
estimates. Smooth maps of vegetation density are interpolated from 
the ALS echo pattern using a technique based on a statistical tool 
called kernel density estimators (KDE). The degree of smoothing 
is driven by the size of the kernel, which is commonly called 
bandwidth. The latter is here automatically adapted to 
accommodate for both the point cloud density variability among 
the study area and the shade effect provoked by the taller canopy in 
the underneath strata surveying.   
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2. KERNEL DENSITY ESTIMATORS 
  
The kernel density estimators are a non-parametric technique for 
estimating the probability density function (PDF) of a point 
distribution defined in a d-dimensional space ℝ!. It is a non-
parametric approach that depends on a single parameter: the kernel 
size, i.e. the bandwidth. However, the choice of the latter is critical 
because strongly impacts on the results. Variable-bandwidths KDE 
techniques have been applied in order to limit such impact: the 
bandwidth varies depending upon the local characteristics of the 
point distribution. In the following we describe a variable-
bandwidth approach based on the so-called sample point density 
estimator [5]. Let 𝑋! ∈ ℝ!   (𝑖 = 1,… ,𝑛) be a point distribution 
with an unknown density. The shape of the PDF in a given point 
𝑋 ∈ 𝑋! according to the KDE can be computed using  
 

𝑃𝐷𝐹!,!(!!) 𝑋 =
1

𝑛×ℎ(𝑋!)!
𝑘   𝑋,𝑋! , ℎ(𝑋!)   ×𝑤 𝑋!   

!

!!!

 1) 

 
Where 𝑘 is called the kernel profile, ℎ the bandwidth and 𝑤(𝑋!) 
corresponds to a weight function. The kernel profile is a function 
that determines the contribution of the distribution points into the 
PDF according to their distance from the kernel center. A range of 
kernel profiles can be applied such as the Laplacian one: 
 

𝑘 𝑋,𝑋! , ℎ(𝑋!) =   
1

2×ℎ(𝑋!)
exp −

𝑋 − 𝑋!
ℎ(𝑋!)

 2) 

 
The bandwidth is a search radius that controls the extent of the 
kernel profile: distribution points farther than ℎ(𝑋!) from the 
kernel center have little or no influence on the PDF. Finally, the 
weight function 𝑤(𝑋!) it is not part of the original definition of a 
KDE and its use is optional. However, it is commonly used within 
task-dependent methods to control the role of each individual point 
into the PDF.  

 
3. METHODS 

3.1. Material 
 
The study area is located in northwest Portugal covering 9 km2 

with slopes ranging from 2.5% to 34.2% and altitude varying from 
70 m to 220 m. The landscape is predominantly composed of 
woodlands dominated by blue gum eucalyptus (Eucalyptus 
globulus Labill) with some stands of maritime pine (Pinus pinaster 
Ait.). The forest stands are usually strongly populated by 
understory and ground vegetation. A systematic grid over the area 
led to the selection of 44 plots, 42 covered by eucalyptus: 30 
mature (>4 years old) and 12 juvenile (1-4 years old) and 2 plots 
populated by pine of 30 and 60 years old. Field measurements 
were performed on each plot (400 m2) according to a protocol 
adapted from the Portuguese National Forest Inventory. Two 
experimented field operators estimated visually the canopy cover 
(%) for each forest strata: overstory, understory and ground 
vegetation.  
During the field inventory, an ALS also surveyed the study area. 
The data were acquired on July 14, 2008 in a full-waveform mode 
using a LiteMapper 5600 system with a scanning angle of ±  22.5°. 
The footprint equals 30  cm. From the digitized waveforms a 3D 
point cloud was extracted using a Gaussian Pulse Estimation 
technique. Each laser pulse gave rise to 1-5 ALS echoes. On that 
basis, the latter are commonly classified into single, first, last, 

intermediate and last echoes. According to the ALS acquisition 
parameters a point cloud density of 9.9 𝑝𝑡 𝑚!  is expected. This 
variable will be hereafter called expected point density (epd). 
However, real-world ALS point clouds always show variable point 
density values that are locally either smaller or larger than those 
specified in an ALS project [6]. For further details on the field 
sampling design, the forest stand characterization or the ALS data, 
please refer to [7]. 
Our method for single strata canopy cover estimation demands a 
ALS point cloud stratified beforehand. In this study we take 
advantage of a former method called adaptive mean shift (AMS 
3D) that segment 3D point clouds into 3D segments corresponding 
to individual crowns [7]. Additionally, such segments are assigned 
to forest strata: overstory, understory and ground vegetation.  
 
3.2. KDE forest canopy maps for single strata 
 
Maps of vegetation density are interpolated from the ALS point 
cloud by means of the KDE technique (Fig. 1). We establish both a 
variable-bandwidth and a weight function oriented to perform such 
a task.  
The variable-bandwidth allows applying a multi-scale interpolation 
to accommodate for the high point cloud density variability 
inherent to any ALS survey (Section 3.1). For instance, underneath 
strata are expected to be under-sampled comparing to the topmost 
layers due to the shade effect caused by a taller canopy. In the 
following, we develop a specific bandwidth to apply to each 
stratum of each plot in order to compensate such an effect. 
Therefore, we can divide the point distribution 𝑋! (Section 2) into 
several subsets 𝑋!,!,! corresponding to single strata that had been 
computed by the AMS 3D (Section 3.2): 𝑝 = 1,… ,44 corresponds 
to the forest plots within our study area, 𝑙 = 𝑜𝑠,𝑢𝑠,𝑔𝑣,𝑔𝑟  stands 
for a given layer (overstory, understory, ground vegetation, and 
ground, respectively) and 𝑗 = 1,… ,𝑚 corresponds to the specific 
layer echoes. The strata specific bandwidth is defined by: 
 

ℎ(𝑋!,!,!) = ℎ∗  ×  𝑛ℎ∗(𝑋!,!,!)   3) 

  
Where ℎ∗  is a default bandwidth defined to apply to all study area 
and 𝑛ℎ∗(𝑋!,!,!) a normalization factor that will drive the variable-
bandwidth settings. In this work we set ℎ∗ = 0.3  𝑚, i.e., it equals 
the ALS footprint (Section 3.1). The normalization factor is 
defined by: 
  

𝑛ℎ∗ 𝑋!,!,! =
𝑜𝑝𝑑(𝑋!,!,!)

𝑒𝑝𝑑
, 4) 

 
where 𝑒𝑝𝑑 corresponds to the expected point density (𝑒𝑝𝑑 =
9.9   𝑝𝑡 𝑚!,  Section 3.1), whereas 𝑜𝑝𝑑 stands for observed point 
density. The opd for a given layer 𝑏 ∈ 𝑙 is computed by means of:     
 

𝑜𝑝𝑑 𝑋!,!,! =
𝑋!,!,!
!"#$%&!"

!!! +    𝑋!,!,!
!"#$%!"

!!!

𝐴!
. 5) 

 where   .  refers to the cardinality of a set, 𝑠𝑖𝑛𝑔𝑙𝑒 and 𝑓𝑖𝑟𝑠𝑡 
correspond to single and first echoes (Section 3.1). Finally, 
𝐴!  (𝑚!) is the area of forest plot 𝑝. Thus, the numerator in (Eq. 5) 
accounts for the echoes assigned to the strata of interest, 𝑏, as well 
as for the echoes lying below it (including echoes assigned to the 
ground). 
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On the other hand, the weight function (Eq. 1) controls the role of 
each ALS echoes on the vegetation density maps. It intends to 
assign a lower weight to the echoes corresponding to the 
boundaries of vegetation features in order to preserve the sharp 
edges of vegetation on the vegetation density maps. The weight 
function is defined as follows: 
 

𝑤 𝑋!,!,! =
𝑣𝑜𝑡𝑒(𝑋!,!,!)

5
, 𝑣𝑜𝑡𝑒 𝑋!,!,! = 𝜒!!(𝑋!,!,!)

!"

!!!
 6) 

Where 𝑋!!(𝑋!,!,!) is an indicator function defined by:  
 

1 𝑖𝑓  ∃𝑋!,!,!: 𝑋!,!,! − 𝑋!,!,! ≤  ℎ 𝑋!,!,! ∧ 𝑋!,!,! ∈ 𝑄!
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 7) 

 
Thus, the function 𝑣𝑜𝑡𝑒(. ) evaluates boundary and inner points as 
a function of a circumference centered in 𝑋!,!,! , radius=ℎ(𝑋!,!,!), 
divided into four quadrants 𝑄! (𝑡 = 𝐼, . . , 𝐼𝑉). 𝑣𝑜𝑡𝑒 .  equals 1 or 2  
if 𝑋!,!,! has no neighbors or all neighbors lay on the same quadrant, 
respectively. Similarly, it equals 3, 4 or 5 if 𝑋!,!,! has neighbors in 
2, 3 or 4 quadrants. 
 
3.3. Single strata canopy cover maps 
 
Canopy cover maps are delineated on the vegetation density maps 
by means of a density threshold (DT). The latter corresponds to a 
contour line that limits the areas considered as covered by 
vegetation (Fig. 1). In order to delineate coherently the canopy 
cover, DT is defined as a function of the variable-bandwidth:  
  

𝐷𝑇!,!(!!,!,!) =
1

𝑚×ℎ(𝑋!,!,!)!
×

1
2×ℎ(𝑋!,!,!)

×
1
5

 8) 

 
Note that Eq. 8 is derived from Eq. 1 by setting 𝑤 𝑋!,!,! = 1 5 
and 𝑋 − 𝑋!,!,! = 0, i.e. corresponds to an isolated echo. An area 
is considered covered by vegetation if there is at least an 
agglomeration of two echoes, i.e. if: 
 

𝑃𝐷𝐹!,!(!!,!,!) > 𝐷𝑇!,!(!!,!,!) 9) 
 
Canopy cover for a single layer can be easily derived from the 
KDE maps (Fig. 1) as a function of the DT: it equals the ratio 
between the forest plots area to the area enclosed by the density 
contours.  
 
3.4. Results comparison 
 
Contrary to other works, which collect ground truth datasets by 
means of more reliable techniques, we compare ALS-derived 
canopy cover with quick-to-apply field visual observations. Since 
our ground truth is more prone to miscalculations, we apply a 
robust linear regression to detect outliers [8] that allows figuring 
out the real trend of the relationship between field- and ALS-
derived canopy cover. Additionally, we are interested in examine 
our method improvements compared with the commonly used 
PRM techniques. Canopy cover of both overstory and understory, 
i.e. if 𝑏 = 𝑜𝑠 or 𝑏 = 𝑢𝑠, is computed adapting the First echo Cover 
Index (FCI) described in [1]: 

 

𝑝𝑟𝑚 𝑋!,!,! =
𝑋!,!,!
!"#$%& + 𝑋!,!,!

!"#$%

𝑋!,!,!
!"#$%&!"

!!! + 𝑋!,!,!
!"#$%!"

!!!

 11) 

 
Regarding the ground vegetation (𝑏 = 𝑔𝑣) we apply the 
Understory Lidar Cover Density (ULCD) defined by [4]: 
 

𝑝𝑟𝑚 𝑋!,!,! =
𝑋!,!,!
𝑋!,!,!

!"
!!!

 12) 

 
It is worth mentioning that [4] focused on the ALS points ranging 
from 0.25 m to 1.45 m. Thus, the layer named understory in that 
work corresponds to our ground vegetation, which was between 
0.15 m and 1.3 m high [7]. Finally, to avoid unbiased results only 
the echoes issues from laser beams emitted with a scanning angle 
less than 14º are used to compute the PRM [1, 4].  
 

4. RESULTS AND DISCUSSION 
 
Table 1 shows the highly different spatial sampling rates at which 
the 44 forest plots within our study area were measured. For 
instance, the opd (Eq. 5) for mature overstory ranges from 5.8 to 
15.4 𝑝𝑡 𝑚!. The inter-strata variability is lower but stills exist: the 
mature overstory displays in average an opd of 10.3 𝑝𝑡 𝑚! 
whereas it equals 9.2 𝑝𝑡 𝑚! for the ground vegetation. However, 
within plots covered by denser overstory such difference can be 
significant.  
Table 1. Observed point cloud density (𝑝𝑡 𝑚!, Eq. 5) by strata. 
 Min Max Mean 𝝈 
Mature overstory 5.8 15.4 10.3 2.6 
Juvenile overstory 8.9 16.6 11 2.3 
Understory 5.3 14.4 9.2 2.4 
Ground vegetation 5.1 15.5 9.2 2.3 
 
For instance, the opd for Plot #12 corresponding to overstory and 
surface vegetation equals 13.3   𝑝𝑡 𝑚! and 7.56   𝑝𝑡 𝑚!, 
respectively. As a result, the corresponding density maps were 
computed applying a bandwidth of 0.22  𝑚 and 0.39  𝑚. 
Consequently, the ground vegetation KDE map is over-smoothed 
compared with that of the overstory (Fig. 1). In other words, wider 
bandwidths spread the influence of ALS echoes over a larger 
neighborhood. In fact, the variable-bandwidth compensates the 
lower probability that a given vegetation feature within the surface 
vegetation strata had being hit compared to the overstory features. 
However, such influence is as well driven by the weight function: 
echoes surrounded by echoes have a higher influence on the KDE 
maps compared to isolated or border echoes. As a result, the 
“horizontal expansion” of vegetation promoted by wider 
bandwidths is not uniformly distributed along the forest stands, 
which allows for preserving the sharp edges of vegetation cover  
Figure 2 and Table 2 show the relationship between field-estimated 
and both KDE- and PRM-derived canopy cover. As far as mature 
overstory is concerned, both the KDE and the PRM approaches 
produce results well correlated with the field measurements 
(R2=0.66 and R2=0.75) and the results in terms of RMSE are very 
satisfactory (9.11% and 9.18%, respectively). The PRM method 
produce more outliers (6.25%) compared with the KDE approach 
(12.5%). With respect to the juvenile overstory stratum, the PRM-
derived results correlate worst than the KDE-derived canopy cover 
(R2=0.68, R2=0.85, respectively) but the RMSE is quite similar 
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(8.37% and 8.54%, respectively).  Therefore, the canopy cover is 
either over- or under-estimated in a similar magnitude (Table 2).  
 

 

a) 

 

b) 

Figure 1. KDE maps for a) surface vegetation and b) overstory of Plot #12. 
Darker tones correspond to higher densities and ALS echoes are 
represented by grey dots. DT (Eq. 8) is represented by black contour lines.  

With respect to the understory, results of both approaches are as 
well quite similar. Nevertheless, the KDE-based method improves 
the RMSE in nearly 5% compared with the PRM approach.  
Conversely, ground vegetation results are highly improved 
applying the KDE-based approach: the RMSE was improved up to 
13%. Moreover, the underestimation of ground vegetation canopy 
cover had decreased from 18.37% to 2.49% when applying the 
KDE-based instead of the PRM method. There are two likely 
reasons for the poor result of the PRM approach concerning the 
ground vegetation layer. On the one hand, the PRM discard laser 
measurements with scanning angles larger than 14° that correspond 
to 32.2% of the ALS echoes assigned to the ground vegetation that 
are likeably to provide additional information on the 
characterization of such a strata. On the other hand, the KDE-based 
approach compensate for the shading effect by means of the 
variable-bandwidth.   

 

 
Figure 2. Field canopy cover estimation compared to a) KDE and b) PRM 
methods. Unfilled symbols correspond to outliers.  

 
Table 2. Linear regression parameters corresponding to Fig. 2. A negative 
∆ means under-estimation. 

Stratum Outliers (%) R2 RMSE (%) ∆  (%) 

Mature overstory KDE 6.3 0.66 9.1 1.1 
PRM 12.5 0.75 9.2 -5.1 

Juvenile overstory KDE 20 0.85 8.5 6.1 
PRM 20 0.68 8.4 -4.3 

Understory KDE 12.5 0.85 6.2 -1.9 
PRM 12.5 0.75 11 -5.7 

Ground vegetation KDE 9.1 0.84 13.8 -2.5 
PRM 16.2 0.73 26.6 -18.4 

 
5. CONCLUSION 

 
In terms of canopy cover estimates for both mature and juvenile 
overstory the KDE approach did not meaningfully improve results 
compared with the PRM approach. However, the KDE map canopy 
cover at a much higher spatial resolution. Indeed, our approach is 
able to figure out the canopy cover in spite of the high point cloud 
density variability within our study area. This is a great 
advancement with respect to the former high spatial resolution 
approaches, namely the grid-based approaches. Thus, our method 
is an automatic technique able to produce single strata canopy 
cover maps at a high spatial resolution, which could be used jointly 
to the well know CHM in order to improve ALS canopy cover 
estimates. We prove that the automatic variable-bandwidth 
succeeds in compensate for the shading effect. Nevertheless, 
further investigation is needed to study the methods reliability over 
other studies areas. 
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