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Abstract 

Plant communities display a vertical structure based on the size and growth pattern of the dominant 

species. To a large extent, this pattern, called vertical stratification, depends on the climatic zone. 

Vertical structure analysis consists in detecting the number of layers and their limits within a forest 

stand. So far, there is a lack of robust approaches applied to airborne laser scanning (ALS) data that 

properly segment the different strata of forests having complex structures. In this study, we propose 

a procedure to characterize vertical forest stratification based on the mean shift (MS) algorithm. The 

MS is a non-linear filter that searches for local density maxima (modes). It is a non-parametric and 

unsupervised approach, which only requires a single criterion, the kernel bandwidth. Since the 

forest point cloud is a multi-modal distribution, the MS is used to find the modes which are 

supposed to be the barycenters of vegetation features. Once achieved, the modes are grouped 

together according to height range and the corresponding ALS points are assigned to each 

vegetation strata. Due to their complex pattern, using a single scale over the whole space is not 

recommended for the analysis of such environments. On this basis, the modes are computed using a 

variable kernel bandwidth according to the forest pattern. To depict such a pattern, we propose a 

new technique that segments the main forest layers at the plot level: overstory, understory, and 

surface vegetation. The procedure has been carried out on 45 plots of a Portuguese forest mainly 

composed of eucalyptus (Eucalyptus globulus) and pine (Pinus pinaster) trees that can be strongly 

populated by understory and surface vegetation. 
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1. Introduction 

Forest and woodland display simple single-storied structures or more complex multi-storied 

structures. Dominant and codominant trees form the overstory layer. Subdominant trees still have 

access to light but do not occupy the upper canopy. The understory layer generally grows in the 

shadow underneath the uppermost layer. It is made of suppressed trees, juvenile trees, and tall 

shrubs. The surface layer is immediately above the ground. Small shrubs and herbaceous plants 

characterize it. All these layers may have different density, thickness, and water content. Vertical 

stratification consists in detecting the presence or not of the different layers within a forest stand 

and in estimating their limits. It is known to play a crucial role in the distribution of fuels, and 

consequently, in fire behaviour, habitat quality, microclimatic conditions, carbon storage, etc. 

Many authors showed the potential of multi-echo airborne laser scanning (ALS) data to compute 

digital terrain models (DTM) over vegetated areas, or to extract forest variables (Hyyppa et al., 

2008). However, most studies focus on the canopy layer, which does not fully characterize 

heterogeneous forests such as Mediterranean ecosystems. Only a few are interested in the vertical 

segmentation of forest structures. Zimble et al. (2003) and Maltamo et al. (2005) characterize forest 

plots as single-storied or multi-storied by analysing the height distribution of vegetation hits. Riano 

et al. (2003) approach vertical forest stratification by applying clustering techniques directly to the 

3D raw ALS data. As pointed out by these authors, the cluster algorithm works well when there are 

only two structures, but it fails in the presence of more complex structures. Morsdorf et al. (2010) 

discriminate vegetation strata over treated plots applying a supervised cluster analysis on a two-

dimensional feature space. The latter is spanned by the height and the intensity of the ALS points. 

This study takes advantage of the fact that the vegetation layers are unispecies. Some authors used 

intensity values to discriminate trees (Holmgren and Persson, 2004; Kim et al., 2009). They assume 

that the ALS points corresponding to trees of the same species and age class have similar values. 

However, the layers seldom display such a property. Moreover, due to calibration problems 

(unknown instrument specifications) and uncertain interpretation of the digital numbers obtained by 

the instruments (fuzziness caused by the vegetation itself), using echoes intensity for ALS 

vegetation studies remains a challenge. 

Among the ALS studies that focus on canopy layers, emphasis is often placed on tree height 

and/or crown width. Very few studies try to assess the vertical component of the topmost layer 

(Holmgren and Persson, 2004; Barilotti et al., 2008; Popescu and Zhao, 2008). They usually deal 

with the crown base height by analysing the vertical profile of the laser hits within a single crown 

with different techniques. Usually, individual crowns are delineated from the canopy height model 

(CHM) by image segmentation. The main disadvantage of such a method is that the dominated and 

smaller trees are invisible in the CHM. Thus, mapping the overstory vertical component at larger 



scales is highly dependent on plot homogeneity. Other authors try to figure out the nature of the bi-

storied or multi-storied overstory by means of tree-based approaches. Reitberger et al. (2009) apply 

a sophisticated method based on normalized cut segmentation to depict dominated trees. Despite 

good performance, it is highly site-dependent since several empirical parameters are involved.       

In this work, we propose a new mean shift (MS) based procedure to segment forest. Since its 

reformulation by Comaniciu and Meer (2002), the MS algorithm has been mainly applied to image 

segmentation. The processing of unstructured ALS point clouds using it was first proposed by 

Melzer (2008) to extract power lines. It is a non-linear filter that searchs for local density maxima 

(modes) and, unlike other methodologies, that requires no prior geometrical or statistical 

knowledge. Since the point cloud is a multi-modal distribution, the MS is used to find the ALS 

modes that are supposed to be the vegetation features barycenters. A global mode corresponds to a 

forest layer, such as the overstory, while a local mode points out a tree crown or a shrub. The only 

parameter used by the MS technique precisely relies on this concept of scale. The area inside which 

the modes (the kernel bandwidth) are calculated is of crucial importance. In the following, we first 

study the impact of the kernel bandwidth on the data set, and then propose a procedure that permits 

forest stratification that takes into account scaling effects. 

  

2. Material and methods 

 

2.1  Study area 

The study area is located in north-west Portugal (40°36' N, 8°25' W), nearby the city of Águeda 

(figure 1(a)). The selected area covers 900 ha at an altitude ranging from 70 m to 220 m, with 

gentle to steep slopes (figure 1(b)). The landscape is predominantly composed of woodlands 

dominated by eucalyptus (Eucalyptus globulus) with some stands of pine (Pinus pinaster). One also 

finds shrublands as well as agricultural fields, and a few built-up areas. The eucalyptus stands 

correspond to regular and irregular plantations, the management of which is mainly done by short 

rotations of about 10-12 years to feed the pulp and paper industry. In spite of a limited extension, 

the study area is composed of various eucalyptus stands in terms of age and growth (plantation, 

coppice or mixed). The forest stands can be also populated by understory and surface vegetation. In 

such cases, these strata are mainly composed of juvenile trees (eucalyptus, pine, acacia, and oak), 

gorse (Ulex europaeus), tree heath (Erica arborea), carqueja (Pterospartum tridentatum L. Willk), 

fern, and herbaceous plants. 



 
a) b) 

Figure 1. Study area: (a) localization and (b) delimitation over the digital terrain model. 
      

2.2 Field data collection  

An extensive forest inventory was performed on plots defined by a systematic sampling method. 45 

plots were selected in a regular grid made of 325 m x 325 m cells, superimposed on a forest land-

cover map produced by aerial photointerpretation. 43 out of 45 plots correspond to forest, 43 mainly 

composed of eucalyptus and 2 of pine. The geometrical center of each cell defines the center of the 

forest plots. The sampling plots are circular and composed of two concentric circles. An outer circle 

(400 m2), hereafter called Plot, and an inner circle (200 m2), called Subplot. The plot delineation 

was performed using a measuring tape. The characterization of vegetation complies with the official 

Portuguese forest inventory manual published by the Direcçao Nacional de Florestas (DGF, 1999). 

Detailed information about this field experiment can be found in Pereira and Gonçalves (2010). 

 

2.3 Airborne laser scanning data 

The ALS data were acquired in July 14, 2008 using the RIEGL LMS-Q650 laser scanner in a full-

waveform mode, in the framework of a research project funded by the Portuguese Foundation for 

Science and Technology (FCT). The acquisition parameters are listed in table 1. The manufacturer 

delivered the point cloud after processing of the full-waveform data. To calculate the effective 

height of the objects, the point cloud is normalized by calculating a digital terrain model (DTM). 

The ground points are first classified using the TerraScan software (Soininen, 2010). The DTM is 

then defined by taking the lowest values within a neighborhood of 0.3 m. The missing pixels are 

obtained using a Delaunay triangulation. Note that the points classified as ground are not removed 

from the dataset. In the following, we consider all points as vegetation hits. 

 

 

 



Table 1.  ALS acquisition parameters. 

ALS sensor RIEGL LMS-Q5600 

Wavelength 1064 nm 

Scan angle 45° 

Pulse rate 150 kHz 

Effective measurement rate 75 kHz 

Beam divergence 0.5 mrad 

Ground speed 46.26 m/s 

Flying height above the terrain 640 m 

Swath 479 m  

Sidelap 70% 

Single run density 3.3 pt/m2

Expected final density 9.9 pt/m2

Distance between lines 150m 

Spot diameter 30cm 
  

2.4 Adaptive mean shift  

The mean shift (MS) is a non-linear filter based on the Parzen window kernel that looks for local 

density maxima (modes) in a set of data samples (Comaniciu and Meer, 2002). The solution of the 

algorithm iteratively converges towards the local maximum: 
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where t  denotes the number of iterations, h  the kernel bandwidth, and , ( )h Gm X  is the so-called 

mean shift vector defined by: 

( )

2

1

2

1

.
n

i
i

i=

n
i

i=

h,G

g
h

=

g
h

m

−

−
−

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑

X X
X

X X
X X

 

 

(2)
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Comaniciu and Meer (2002) proved that the MS algorithm converges on a stationary point. It can 

easily be extended to a distance-based segmentation technique, grouping together all the modes that 



are closer than a certain distance r∈ . The MS segments are then retrieved by aggregation of the 

basins of attraction of the corresponding convergence points. In the following, we set 2r h=  for all 

experiments. The choice of the kernel bandwidth h  is critical because it strongly impacts on the 

results. A small kernel width leads to several distinct modes (small basins of attraction, more and 

smaller objects), while a large kernel width aggregates small structures into larger ones (small 

number of modes with large basins of attraction). The determination of an optimal value of h  is 

actually a major challenge for an efficient MS segmentation. As far as the vertical component is 

concerned, the forest layer depth increases with height. Typically, scrubby vegetation strata are 

thinner than mature tree layers. The optimal value of h  that allows a proper segmentation of the 

shrubs may fragment a tall tree into several segments (lower branches, top foliage, etc.). Figure 2(a) 

results from a segmentation with 1 mh = . While the surface vegetation has a coherent shape, the 

higher features are oversegmented. Increasing h  improves the overstory segmentation, but it may 

cause merging between close small vegetation features. For instance, if 4 mh = (figure 2(b)) the 

denser surface vegetation will attract the sparse understory, causing an undersegmentation of the 

scene. Thus, using a single scale over the entire space is not recommended for the analysis of forest 

environments. As far as the MS technique is concerned, several statistical approaches deal with the 

scale selection (Comaniciu, 2003, Huang and Zhang, 2008; Bo et al., 2009). Regarding the task 

dependent applications the kernel bandwidth can be provided by the user (Comaniciu and Meer, 

2002). Here it is calculated as a function of the height range: overstory, understory, and surface 

vegetation. 
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b) 

Figure 2. Mean shift segments over Subplot 30 using (a) 2 1 mr h= = and (b) 2 4 mr h= = . 

 
A height frequency histogram usually shows that forest plots are characterized by two dense zones: 

the overstory and the ground. A third zone may arise when dense understory is present. In this 

respect, we apply the MS segmentation technique to compute the basins of attraction of the two 



denser zones by calculating the two main modes of the ALS point cloud. Since we study the vertical 

profile at the plot level, the influence of the horizontal coordinates is removed in the computation. 

Thus, for planimetric distances, the kernel bandwidth is set to the plot diameter. The vertical 

extension of the kernel is defined as the value that forces the ALS points to converge towards two 

modes only. To calculate such a bandwidth, we set the initial kernel bandwidth to 1 m and 

increment it by 1 m at each iteration until the MS algorithm accomplishes only two modes. The 

borderline between the basins of attraction defines the overstory height threshold. 

We consider that forest plots in which the 95% height percentile is lower than 5 m are composed 

of a maximum of two layers. However, in plots with taller trees, a third layer may coexist. In such a 

case, the understory height threshold is set to 1 m. This assumption and its consequences are 

discussed below. Some results are presented in figure 3 using height frequency histograms. 
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Figure 3. Forest stratification of seven plots. The results are illustrated by a height frequency histogram. (a) Subplot 
30; (b) Plot 2; (c) Plot 23; (d) Plot 12; (e) Plot 46; (f) Plot 17; (g) Plot 3. The different colors define the strata 
delimitations. The histograms are limited to 400 points; for bins over that value, the real frequency value is given. 
 



The initial solution of the segmentation at the plot level is then refined at a thinner scale to get a 

better discrimination of forest strata. The MS is reapplied with a modulation of the kernel 

bandwidth. Because vegetation features, e.g. the eucalyptus crowns, are not spherical we adopt two 

different metrics for planimetric and height distances. The horizontal component is kept constant to 

1 m while the vertical component of the bandwidth is empirically set to 0.66 times the overstory 

amplitude (difference between the highest and the lowest bin of the topmost distribution) and to 0.5 

times the understory amplitude. As for the surface vegetation, the bandwidth is set to 1 m in all 

directions. 

 

2.5 Adaptive mean shift procedure 

The procedure to detect strata works iteratively from the bottom to the top of the forest structure, by 

adapting the kernel bandwidth within the defined height ranges (figure 3). First, the 5% height 

percentile, 1lw = , of the data points ( , , )i i i ix y z=X  is calculated. The adaptive kernel bandwidth, h , 

is set to a value ranging within the heights defined in section 2.4. Therefore, the modes 

( , , )i i i ix y z=X  for each ALS point, iX , are computed using the corresponding value of h . All 

modes that are closer than r  are grouped together creating MS segments, p∈C . The forest layer, 

1l=F  (figure 4(b)), is a set of iX  for which the corresponding MS segments are closer than 1ls =  from 

1lw = . The ALS assigned points are not taken into account to further calculations. This step improves 

the segmentation by removing the influence of the lower layers, which are usually denser  
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than the higher. When two regions with different densities are adjacent, the points of the sparser 

region are likely to be shifted towards the denser one (figure 2(b)). In the second iteration  the 5% 



height percentile of the remaining points, 2lw = , is calculated in order to define the new value of h  

(figure 4(c)) . The procedure keeps on until all points are assigned to one layer.  

Note that the value of ls  defines the resolution of the forest stratification, i.e., the number of 

strata. Since we want three strata, we set ls  to the amplitude of layer l . However, it can take lower 

values to thinner analyses, for example to depict bi-storied overstories. 
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 d) 
Figure 4. Procedure iterations on Subplot 30 (200 m2). (a) Original ALS points (black). (b) First iteration, points 
assigned to the first layer (green) with 1 0 mw = , thus 2 1 mr h= =  and 1 ms = . (c) Second iteration, points 

assigned to the second layer (red) with 2 2.38 mw = , thus 2 3.75 mr h= =  and 7.5 ms = . (d) Third iteration, 

points assigned to the third layer (blue) with 3 8.04w m= , thus 2 8.3 mr h= =   and 12.5 ms = . 

 
3. Results and discussion 

The reliability and robustness of the procedure has been assessed on all defined circular plots (400 

m2). Figure 5 shows the results over six plots with various forest structures: single layer plots 

(figure 5(d)); multi layer plots (figure 5(c), figure 4), plots with single overstory stands (figure 5(e)), 



plots composed of different stands (figure 5(f)), juvenile plots (figure 5(a)) and adult stands (figure 

5(d)). Plot 2, Subplot 30 and Plot 12 (respectively, figure 5(a) and figure 4 and figure 5(c)) are 

characterized by a denser surface vegetation (mean height of about 1.3 m, 1.5 m and 1 m, 

respectively) while Plot 23 (figure 5(b)) is populated by moderate surface vegetation (mean height 

of about 0.40 m) with some species 1 m tall. 
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Figure 5. Results of the MS-based procedure over five eucalyptus plots and one pine plot. The surveyed tree metrics 
are also displayed. (a) Plot 2; (b) Plot 23; (c) Plot 12; (d) Plot 46; (e) Plot 17; (f) Plot 3. The plots have, respectively, 
mean age of 3, 6, 13, 60, 10 and 3 years. 

 

 



Figures 4 and 5 show that the original points progressively converge by means of the MS algorithm, 

producing coherent segments at least along the vertical component. It can be visually assessed that 

are well assigned to layers. Only two strata are retrieved both in figures 5(a) and 5(d). In Section 

2.4, only two segments were defined for juvenile plots (figure 3(a)) while three segments were 

expected for adult stands. However, figure 5(d) shows that only two strata have mushroomed from 

the procedure. Due to the lack of understory (this plot only has trunk reflections beneath the 

overstory), the 5% height percentile at the second iteration equals 9.25 m. Figure 3(e) shows that 

the kernel bandwidth at the second iteration is directly set to one of the overstory stratum. All ALS 

hits lying on the tree stem were then assigned to the overstory. Thus, by applying our approach, the 

number of layers retrieved is inherent to the forest pattern. Moreover, it provides a fuzzy 

stratification of the forest where different layers can interpenetrate. It is a more realistic result than a 

simple stratification only based on height thresholds (figures 4 and 5). Although the surface 

vegetation height threshold was initially set to 1 m, the procedure is able to figure out the shape of 

this layer. In figures 4 and 5(a), points up to 2 m height are classified as surface vegetation. A 

similar analysis can be done for the upper strata. Moreover, the global framework can provide multi 

layer segmentation. For instance, by setting ls  to half the forest layer amplitude, the forest plot can 

be stratified with a thinner resolution (single-storied and bi-storied). The post-processing of each 

layer derived from a coarser analysis is certainly a field to investigate. 

   

4. Conclusion 

In this paper, we explore the MS potential to segment vegetation features. Additionally, a 

unsupervised and non parametric approach is proposed to extract forest layers. It is carried out in 

three dimensions providing genuine 3D segments. Thus, the procedure is able to compute large 

areas at the thinner resolution. The only parameter that needs to be defined (the kernel bandwidth) 

is here adapted as a function of the forest pattern. To analyse such pattern, we introduce a technique 

that stratifies forest at the plot level by computing the basins of attraction of the two denser zones. 

Since the MS applies to a joint space (spatial and attributes), additional attributes of the ALS points 

(intensity, number of echoes, etc.) may be introduced in the calculation of the MS vector. 

Additionally, the analysis of different kernel functions and metrics may help to better fit the tree 

crowns aiming at a thinner forest stratification but also at a better fit the tree crowns in single tree 

extraction. In the near future, we pretend to validate our procedure using forest inventory data 

acquired in the frame of the FCT project. 
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