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Abstract : Wildland fire is a common threat in many European countries, especially in the
Mediterranean Basin. Every summer in Portugal, Spain, Greece, Italy or France thousands of
hectares of forests and shrub-land burn and even people are endangered. Since wildland fires
represent a social and economic risk for the society, there is a compelling interest in
understanding them to better control them or, at least, to weaken their impact. Providing
accurate fuel maps is critical to study fire behavior, assess fire hazard, and quantify fire
effects. Traditionally fuels had been mapped by field survey sampling, therefore a time and
cost consuming task. Thus, there is a total interest in study the potential of remote sensing
technologies to mapping fuels. In this report we review the standard methods and techniques

to mapping fuels using airborne LIDAR (Light Detection and Ranging) systems data.
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Introduction

This report aims to review standard methods anldnigoes dedicated to the production of
fuel maps using airborne LIDAR (Light Detection aRenging) systems and to evaluate the
fusion of LIDAR data and aerial multispectral imageProviding accurate fuel maps is
critical to fire behavior studies, hazard assess$pagd quantification of effects. These are the
three main topics of fire research programs butewghasize here fire behavior, the key
variables of which are based on the identificabbkey variables in fire models. FARSITE is
one of the most popular semi-empirical model, whiels eight input variables retrievable
using LIDAR techniques. The first five ones — eliewa, slope, aspect, fuel model and canopy
cover — are required to simulate surface fires avthik last three ones — canopy height, crown
bulk density and canopy base height — are requresimulate crown fires. In this report, the
topographic variables are mentioned because thpgatron fire propagation, but the question
of their determination using LIiDAR data is not colesed. Thus, we focus on fuel maps and
review the methods, techniques and strategiesfohesters and fire researchers have been
applying for years to characterize forests. Thewkhow and the knowledge of the
requirements of the other actors is crucial to rhédebehavior using LIDAR. Therefore, the
first part of this report is dedicated to the dgamn of how specialists sample the forest
environment. In the second part, we review the mdAR methods and techniques that can
be applied to retrieve forest variables. Thosenatenecessarily used as inputs in fuel maps
but direct extraction has been poorly studied sowsh to investigate the potential and limit
of LIDAR systems for retrieving them. As far as lfueapping methods and techniques are
concerned, we divide them in two classes: directienaal of fuel variables and fuel
classification methods.

1. Fire behavior

Wildland fire is a common risk in most European moies of the Mediterranean Basin,
United States of America, Australia... Every sumniegusands of hectares of forests and
shrublands burn and even people are endangeresk Bildland fires have a major social and
economic impact, there is a compelling interegidtier control them or, at least, weaken their
consequence. Since they spread horizontally, igreges vertically, and progress with time,
they can be viewed as a four-dimensional processoring toFinney (2004, this process
depends on the ignition source (e.g., lightningyligence), the fuel bed that is likely to burn
(e.g., dry needles), and the environmental conhtithat facilitate fire spread (e.g., wind,
slope).

1.1. Types of wildfires and fuel strata

Fire scientists and managers generally consideettypes of wildland fires according to the
fuel stratum where flames spread: ground, surfand,crown fires. A ground fire spreads in
ground fuels that burn very slowly and the fuel samption can cause significant injury to
trees and shrubs. A surface fire burns the suffiagdayer, which lies immediately above the
ground fuel layer but below the canopy fuel. Ivésy variable depending on the nature of the
fuel complex. Finally, a crown fire spreads in #levated forest canopy that generally has
higher moisture content and lower fuel load tharfase fuels Figure ). Crown fires are
more difficult to control than ground and surfaged, and their spread rate is several times
faster than surface fire¢thermel, 1988 Their effects are also severer and more lasting:
after a crown fire, the mortality of several treesies is expected.



Figure 1. Top: aerial fuels with all live and dead materials
located in the upper forest canopy, including teanches and
crowns, snags, moss, and high shrubs. Middle: serfaels with
all materials lying on, or immediately above, theound,
including needles or leaves, duff, grass, small ddeeood,
downed logs, stumps, large limbs and low shrubsttoBo
ground fuels with all combustible materials lyingngath the
surface including deep duff, roots, rotten buriedd, and other
organic material.

According toVan Wagner (1977)there are three types of crown fires: passivéy@&cand
independent. In passive crown firdsgqure 293, often referred to as torching or candling,
individual or small groups of trees torch out bolic flame is not consistently maintained in
the canopy. In active spreading crown firegy(re 2, also called running or continuous, the
entire surface/canopy fuel complex is involved gt crowning phase remains dependent on
surface fuel heat for continued spread. In indepehdrown fires, canopy fuels burn without
help from a supporting surface fire. There is nersitfic evidence of such fire occurrence.

Figure 2. Passive (left) versus active (right) crownirigr6tt and Reinhardt, 20p1

1.2. Environmental factors affecting wildland fire behavior

Wildfires arise and persist due to the coexistavicthree elements: fuels, oxygen, and heat.
They constitute the so-called fire triangle. Ifiagée element ends, the triangle breaks and the
fire goes out. We are interested here in threeralements influencing the spread rate of a
wildland fire and acting as input variables in Milld prediction models: fuel characteristics,
topography, and weathefFigure 3. In the next sections, we briefly discuss théuerfice of
topography and weather on fire behavior.



Figure 3. Fire spread triangle.

1.2.1. Topography

Landscape topography has an impact on the envinst@ineonditions, the amount of certain
types of vegetation, and therefore, has a direfftence upon fire propagation. In the
following, we focus on the aspect, slope and elemathat are input variables of fire spread
models and that can be retrieved using LIDAR.

a) Aspect:the aspect is the direction a slope is facifgfre 4. The solar orientation
generally determines the amount of heat providethbySun and therefore has high influence
on the amount, condition and type of fuels. Soutlswest slopes are more exposed to
sunlight and often correspond to lighter and spafsels, higher temperatures, lower
humidity and lower fuel moisture. They consequetlg most critical in terms of start and
spread of wildland fires. On the contrary, northifig slopes are less subjected to fire activity
than south-facing slopes. They are more shadedchwleads to heavier fuels, lower
temperature, higher humidity and higher fuel maossigyne et al., 1996
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Figure 4. North-facing vs south-facing slopeslC, 2009.

b) Slope:it is the degree of incline of a hill sidBigure 5. The steeper the slope, the
faster the fire spreads, and it burns more rapigiiill than downhill NIFC, 2004. An
explanation for these two phenomena is that thé dbeve the fire is brought into closer
contact with the upward moving flames. Another @ncabout steep slopes is the possibility
that burning materials roll down the hill and ignthe fuel below the main fire.

A surface fire is primarily influenced by the amowf fuel and the wind speed, but a fire
starting near the bottom of a slope in normal aagtupslope wind conditions should spread
faster and over a larger area than a fire starteay the top of the slopki(n et al., 200Y.

c) Elevation: it plays a determining role in the state and amadifitel. Fuel at lower
elevation, where temperature is higher, dries adiez in the course of the year than that at
higher elevation NIFC, 2009. High altitude landscapes are mainly characteribgd
grasslands or shrublands, which disappear beyondriable elevation according to the
latitude. Elevation affects fire behavior in sevather ways, like the amount of precipitation
or the wind exposure.
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Figure 5. Steep slopes causing rapid fire spréad-C, 2009.

1.2.2. Weather

Of the three components of the fire triangle, tleatler conditions are the most variable over
time and the most difficult to predict. The fire atber parameters include air temperature and
relative humidity, precipitation, atmospheric stépiand wind. Air temperature varies with
time, location and altitude. Changes in near serfamperature are caused by the alternation
of seasons, night and day, and weather. Seasodatfliamal temperature contrasts can be
large or small, depending on latitude, elevatiopography, and on the proximity of oceans
or lakes that smooth them. Surface and atmospteriperature primarily results from solar
radiation but, at a smaller scale, it may be cabsea wide fire Pyne et al., 1996

Relative humidity is the amount of water vapor thaists in a gaseous mixture of air and
water. It is usually expressed in percent (1% spoeds to extremely dry air and 100% to
extremely moist air). Air temperature and relativemidity are inversely related: when
temperature increases, relative humidity decreasdsvice versa. Firefighters can see or feel
evidence of weather changes, such as wind inteagdn, rain or increasing temperatures but
not changes in relative humidity that may havegaicant impact on wildland fire behavior.
Low relative humidity is indeed an indicator of hifjre danger: atmospheric water content,
whether in the form of water vapor, cloud dropletsprecipitation, is the primary factor in
wildland fuel moisture content (FMC) and its resgtflammability because the amount of
moisture that fuel can absorb from or release écaihlargely depends on it. FMC varies over
time, location and fuel type. Light fuel such aasg quickly gains or loses moisture when
relative humidity changes. Heavy fuel responds nmaohe slowly to humidity changes. FMC
is also affected by the amount and duration ofigtalh. Fine fuel reacts rapidly while heavy
fuel gains or loses moisture more slowly. Intensd audden showers generally don’t raise
FMC contrary to light and long rainfalls, when fungs time to absorb water before it runs off
(NIFC, 200).

wind is the most critical weather variable affegtiwildland fire behavior, also the most
unpredictable in time and location. This varialgjliespecially in difficult terrain, can be a
problem to firefighter life safety. The wind impacthe fire environment) by increasing
oxygen supplyiji) by determining the fire spread directiain) by increasing the fuel drying,
iv) by canying sparks and firebrands ahead of the fiva front, causing new hot spot§,by
bending flames, which results in the preheatinguel ahead of the fire spot, an) by
influencing the amount of consumed fulEC, 2009. Indeed, a strong wind may affect the
residence time of the fire front by shortenindagding to a lower amount of consumed fuel.
One considers two types of winds: general windscatesed by gradients between a high and
a low pressure system and, as weak winds, theyr@gndo not have great influence on fire
behavior. Local winds, so named because they argedaby local conditions, are classified in
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slope wind, valley wind, and sea and land breeheyTre induced by local differences in air
temperature and pressure. The ground topographydinast influence in near surface air
temperature, e.g., higher terrains or north-fasiogpes warm less than lower terrain and have
strong influence on local low-tropospheric winds.

To sum up, the most critical fire weather condisi@re a strong and shifting wind, very low
relative humidity, high temperature, unstable atphese and dry lightningMillan et al.,
1999.

2. Fuels

To predict fire behavior, it is convenient to déiservegetation as a fuel. Fuel maps are
essential to compute spatial fire hazard and siulee growth and intensity across a
landscapeKeane et al., 2001 Fuel is not the primary cause of fire, but ittaaly changes
its behavior, affecting the ease of ignition aslves the fire size and intensity. Correct
description of fuel properties is then critical itaprove fire danger assessment and fire
behavior modeling. Mapping these properties regquikeowledge of the vertical and
horizontal vegetation structur€lfuvieco et al., 2003Roughly, one can stratify the vertical
distribution of fuel throughout the forest. As sesarlier, there are three types of wildland
fires: ground, surface, and crown fires. Mappinglduconsequently requires to know fuel
properties in each layer.

2.1 Surface fuel properties

Surface fuels are ground dead organic matter cofnamy the surrounding vegetation, grass,
low shrubs and young trees. The physical propediesurface fuels include the surface-to-
volume ratio, the specific gravity (or fuel paréallensity or mass-to-volume ratio), the load
by size class, and the fuel bed depth. The cherproglerties are the heat and ash contents.

2.1.1. Size and surface-to-volume ratio

Fuel particle size is critical in fire behavior. @kmaller the size of a fuel particle, the larger
the surface-to-volume ratio. The latter is an intgatr fuel characteristic: the particles lose
moisture and heat faster when the available suréaea is large Ghuvieco et al., 2003
Traditionally, four size classes have been spetifie6 cm, 6-2.5 cm, 2.5-7.6 cm, and over
7.6 cm QAlbini, 1976). They correspond to moisture timelagsifle 1 Figure §, defined as
the time necessary for a fuel component to reachthivd of its equilibrium moisture content
(Allgower et al., 200)t Higher timelags, which do not influence fire belor, must be
considered when studying fire effect.

Timelag class Woody fuel size Duff depth
| class, cm class, cm
1hr 0-0.6 0-06
10 hr 0.6-25 0.6-1.9
100 hr 25-7.6 1.9 - 10.2
1000 hr > 7.6 =10.2

Table 1.Correspondence between timelags class, fuel size Figure 6. Three different size classes.
and duff depthjeeming et al., 19797

2.1.2. Fuel particle density

The fuel particle density is its mass per unit woéu For the BEHAVE fire modeklbini
(1976) specifies a value of 51.25 kg InThis is a standart value for the USA but it mst
calibrated again for other zones.



2.1.3. Fuel load

Fuel load, expressed in kg™hor in t ha?, is the amount of fuel potentially available for
combustion. In the particular case of fire behgvitororresponds to the elements that directly
influence fire spread and intensity. Its effectsvheer may be antagonistic. As a heat source,
the fuel availability tends to magnify the reactiontensity. Spread rates may however
decrease as load increases because the extraetmhbs an important heat sink, and the
ignition temperature is not raise@l{uvieco et al., 2003 Much of the response depends on
the fuel size class, its packing ratio, and whether dead or alive. Fuel load is first divided
into dead or live fuel and second in size classes.

2.1.4. Fuel bed depth

The fuel bed depth is the average height of surfiaels contained in the combustion zone of
a spreading fire front. In grassy or shrubby veti@tait corresponds to plant heigtitigure

7). In the litter bed, its measure is critical whigiter and duff coexist, since litter has

influence in fire behavior and duff nd8iown, 198). The fuel bed depth directly affects the
fuel bed bulk density, which is the total amountfuél potentially available, defined as the
weight per unit volume of loosely tipped fuel.

Figure 7. Fuel bed depth: a) litter and b) shrubs

2.1.5. Heat content and ash content

The heat content is the amount of energy per ueight contained in a fuel particle. It drives
the energy of combustion. Some fire behavior modsks a constant value, e.g., 18.61 MJ
kg™ in the BEHAVE fire systemA(lbini, 1976). It is determined in the laboratory with a
bomb calorimeter or by near infrared reflectancecspscopy. It is species dependent and it
directly increases the rate of fire spread. Thal tatineral ash content of a fuel particle is the
unburned fraction. It is also often considered asstant in fire behavior models and is
usually retrieved by chemical analysidigower et al., 2001

2.2. Crown fuel properties

Crown fuels are those that burn when fire leapsnfrone tree crown to another. Their
properties, which determine the spread rate anehsity of crown fires, include: canopy
closure, canopy height, crown base height, andcdowik density Chuvieco et al., 2003



2.2.1. Canopy closure

Canopy closure (CC) is defined as the progressdaation of space between crowns as they
spread laterally, increasing the canopy covegyre §. CC influences the fire behavior
because it affects the amount and proximity of felilable for a crown fire. It also drives
the moisture of shaded fuel above ground. A compteser tends to reduce the wind below
the canopy, influencing surface fires. Wind adjustinfactors (WAF) are required to run the

BEHAVE fire behavior modeling system. WAF is cak@ld from CC but also from canopy
height.

g

Figure 8. Canopy closure(CC)

2.2.2. Canopy height

Canopy height (CH) affects fire spread: the higiner canopy the greater the wind speed. It
also contributes to the amount of crown fuel. Thel favailable in a tree crown is often
estimated from tree height. It affects the loftafgembers from a torching trelbini, 1976),
that is, an ember from a taller tree will travettfier than one lofted from a shorter tree.

2.2.3. Crown base height

Crown base height (CBH) is defined as the vertlistiance between the ground and the base
of the live crownFinney (2004 yeports that dead branches, shrubs or small t@&asecting

the surface fuels to the crown fuels, may effetyiveduce the nominal CBH valu€&i@ure

9). It determines the threshold for transition fraraurface fire to a crown fire.

Tree height

Crown base height

Figure 9. Tree metrics: tree height, crown diameter andisrdase height.



2.2.4. Crown bulk density

Crown bulk density (CBD) is the amount of fuel pmnit volume of forest canopy. Different
species have different CBD depending on branchimfaliage characteristic{iuvieco et
al., 2003. The overall bulk density of the forest dependgtant species and CC.

2.3. Classification schemes

Fuel properties are complex and the combinatiomegfetation species is almost infinite. It
would be tedious to inventory all fuel propertie®®y time it is necessary to predict an event
or make a management decision. Fuel beds are #isciusally complex: fire behavior,
hazard and effects vary widely as a function ofirthghysical attributes. Fuel bed
characteristics result from the expression of egioll processes, natural disturbances, and
human manipulation, thus they are difficult to mloddapping fuel requires consistent,
scientific, orderly classification methods as wad fuel bed properties inferring methods
(Sandberg et al.,, 2001 Fire managers defined different classes of ftygles (FT)
corresponding to “an identifiable association oélfelements of distinctive species, form,
size, arrangement, and continuity that will exhithiaracteristics fire behavior under defined
burning conditions” Iflerril and Alexander, 1997 In practice, fuel stratification is difficult to
handle so it is often accomplished by identificatmf FT, i.e., forest stands where similar
association of fuel properties are expected. Thstrm@mmon fuel type classification systems
(FTCS) have been developed in the USA and Canaslaally, they are supported by a photo
guide which facilitates field reconnaissance ofetagon types and percentage covepgire
10).

To characterize the North American forestsgderson (1982¢eveloped a FTCS that is
applicable to a wide range of vegetation types.eResystems propose to better describe
national or regional forest reality. For instantahle 2presents the system dedicated to
central PortugalADAI, 2000). And FTCS like Prometheus better suit Meditereame
ecosystemsHigure 1).



Group ID Description
Herbaceous HERO1 Herbaceous fuels
Shrubs MATO1 Shrubs with mean height less than 0,5 m
MATO02 Shrubs with mean height between 0,5and 1,5 m
MATO3 Shrubs with mean height higher than 1,5 m
Stands PPINO2 Young pine plantation, without silvicultural intervention
PPINO3 Pine plantation without understorey
PPINO4 Pine plantation with understorey
PPINO5 Overstocked pine plantation
EUCO1 Young eucalyptus stand (<3 years)
EUC02 Eucalyptus plantation without understorey
EUCO03 Eucalyptus plantation with understorey
FOLCO1 Broadleaf deciduous trees
Logging slash RESEO1 Logging slash

Table 2.Fuel types identified in the central region of Rayal (ADAI, 2000.

Fuel type 1
= 60% Grass »
Fuel type 2
P E———
Mean height |—
(0.30-0.60 m) St it
Fuel type 3
- 0/ Mo, = oo |
> 60% Shrubs & __| Mean height
< 50% Trees (=4 m) (0.60-2.00 m)
=== Mean height
(2.00-4.00 m)
Fuel type 3

T

gl &
t T’f Fuel npes
3 :ﬂ'm y
< 30% Shrubs 1y e 3,, ir } o
/ Mean height difference %-’z;' t’ 'CKY\T\ t?i
=50% between shrubs and trees

>0.50m

ces (=4 m)= > 30% Shrubs

Mean height difference
between shrubs and trees

=0,50m

Fuel: Type
IWI

b ? ?l’ ] '-A
fw
Figure 11.Prometheus fuel type classification systéafio et al., 2002

The most complete fuel stratification was publishgdsandberg et al. (200Who assigned
fuel characteristics to several combinations oégaties of cover types and stand structures.
Figure 12shows the fuel layers and categories consideredisnFTCS. It distinguishes six
strata or fuel beds, each characterized by theepoesof certain FT. This system aims to be
more dynamic than the classical FTCS and helpsatadardize the way FT are established,
which opens new possibilities for non-specialistere, the different FT can be friendly
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customized by the user who chooses the type oftatge and the percentage cover in each
stratum. According to these authors, it “simpliftege complexity to a reasonable degree, but
does not oversimplify the description of wildlancef beds”.

Fuelbed Strata

Canopy

Categories
Low Grasses .}
- % Forbs =
Vegetation Sedges .« ,%; ] %
Stratum B Piles and

Woody Sound Wood Rotten Wood Jackpots Stumps
Fuel p:

Stratum M m 4

3

Litter 2k Lichen l]’ Moss
'l

A

SN Basal
.\. . "‘r Accumulation ﬁ:

Ground

Fuel
Stratum

Figure 12.Fuel bed strata and categorieSgndberg et al., 2001
2.4. Fuel models

By itself, information about the spatial distritarti of vegetation is not sufficient to

characterize fire behavior. Quantification of alavant fuel properties is required: canopy
height, canopy base height, percentage cover,lda€l, surface-to-volume ratio... Within a

fuel type, the aerial and surface fuels are esethdity different approaches. To calculate
crown fuel properties, all trees within a stand finst identified. Second, their individual size

or the mean size of several specimens is meashsgh{, DBH, crown diameter...). Then

published allometric equations allow the calculatod crow fuels.

Such an approach cannot be used to map surface fieeuantify them, Fuel Model (FM)
have been designed. They aim at estimating thecegbesurface fuel loads under specific
covers. These quantitative parameter sets are ndetnt by sampling each FT:. such
procedures involve fuel description at the partioleelement level (leaf, spine, branch,
stem...), physical (length, width, volume, mass-ttuvee ratio, surface-to-volume ratio...)
and chemical (moisture, heat content...) characikesisthat are assessed by different
techniquesAllgower et al., 200% Cohen et al. (2003eviewed fuel properties for all species
studied in the Mediterranean Basin. This work tisaintegrated in the Fire Star project
(http://www.eufirestar.org/ aims to record information about the FT of theuals
Mediterranean vegetation covef3gure 13. The most classical FM were designedAlityini
(1976) who defined 13 FM providing standardized FT prdpsrand byAnderson (1982)
who sampled the North-American environment into A. Table 3 displays the FM
dedicated to Central Portugal for each FT liste@ainle 2
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Specie Mame iBrachypodium rarmosLIm = I
Type IGrass 1L l

Country IFrance fud ]
Diata
Data Code Specie Marne Specie Code |
ICH4 Brachypaodiurm ramosunn br
Type State Shape |
Grass alive Other
Country |Sampling Location ]
France lBeauchamp 3]
Date Surface toValume Ratio [m-11 [Mass taValume Ratio [ka/m3) |
03/2001 0.00E +00 4 42E+02
High Calorific W alus [J/ka) Spedific Heat [ /K ka) A5k Content (o4g)
1.7BE+D4 0,00E+00 1A3E+01

Methad of measurement |

References [Bib_Auteur [arnee

Commentaires

Enre 4| O 1 v vules]surt
2 s = e

Figure 13.Input GUI of the Wildland fuel particles characteation database structur€ghen et al.,

2003.
Load (kg/m® S/V Ratio -
e v B M RS e L

Model Dead Fuels Live
1-hr. 10-hr. 100-hr. |(@<6 mm)| 1-hr. shrubs (cm) (kJ/kg) (%)
HERO1 1.17 - - - 80 - 28 18000 30
MATO1 0.22 - - 1.27 60 60 51 22500 40
MATO02 0.74 - - 223 60 60 94 22700 40
MATO3 0.92 - - 57.4 60 60 130 22700 40
PPINO2 1.3 0.1 2 - 50 - 11.6 21000 35
PPINO3 0.6 0.1 0.1 - 50 60 6.5 21000 35
PPINO4 1.7 0.2 0.2 1.8 50 60 62 22000 35
PPINOS 0.35 0.1 0.25 0.1 50 - 5 21000 35
EUCO01 0.35 - - - 55 - 3 20000 25
EUCD2 0.3 0.46 0.3 - 55 - 8 20000 25
EUC03 0.7 0.3 0.5 0.9 55 60 30 22000 25
FOLCO1 0.8 0.3 0.74 - 55 - 10 20000 25
RESEO1 0.25 0.18 0.1 - 79 - 5 18500 21
HERO1 0.7 0.72 0.4 - 55 - 12.2 22000 30

Table 3.FM for Central Portugal ADAI, 2000.

A forest typology was developed for the Portuguls¢ional Forest Inventory (NFI) and
translated into FMTable §: it combines the cover type of the dominant otagsspecies and
the forest structure (closed/open, low/tall). Thmmdvadjustment factor (WAF) is another
parameter that is crucial to determine whether gpehlow stand fuels are drier or not when
exposed to the wind, and how the plant canopy nexdihe wind acting on a surface fire.
That kind of approach, where more significanceivem to the horizontal and vertical spatial
continuity, can be important because it has anceff@ the environmental thresholds (fuel
load, fuel moisture, wind speed), allowing horizdrdand vertical fire development or spread
in a given vegetation type.

To describe fuel properties, a new trend consrst®erging data from different sources. The
second-generation FTCS 8andberg et al. (2001hat calculates fuel properties at different
scales is now operational. A FT prototype is fgstected Kigure 13. Second, the gradient
and physiognomic variables are adjusted using lazdh found in the literature or in
databasesHgure 13.
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Cover and structural type Depth, Fine fuel load, t ha' SVR, HC, Mx, WAF
-l

cm I-h live m kI kg'l %
Acacia spp. el o 83 5.17 347 5214 20236 32 017
oT 16 1.10 0.49 3645 1985 27 0.4
Eucalyptus globulus 0oL 51 0.83 1.18 5764 21080 30 023
CT 28 5.16 2.15 5752 20908 28 0.0
CL 57 3.73 4.02 5570 20969 30 0.3
Quercus pyrenaica CL 9 1.60 248 5497 20894 26 0.12
oT 17 2.05 0.42 7119 19826 26 0.9
Diverse 0oL 9 1.73 1.17 4720 20535 28 036
CcT 39 2.55 1.41 4772 20494 28 013
CL 58 1.91 3.56 5318 20448 32 017
Other deciduous oaks CL 83 6.37 489 5039 20436 25 0.4
oT 8 432 0.90 4551 19608 38 017
Pinus pinaster OL E'd 1.36 236 4303 21189 36 044
CT 24 7.36 304 498 20223 37 012
CL 46 6.66 6.35 4950 21379 36 016
oT 41 1.38 0.56 5994 21475 28 016
Quercus suber OL 50 128 1.00 534 21225 32 036
CT 17 329 1.19 5583 21280 22 Q.12
CL 9 475 439 4666 20406 25 015

Table 4.Fuel model parameters for the 19 Portuguese fdygsts. CL: closed and low stands, CT:
closed and tall stands, OL: open and low stands @&n and tall stands, SVR: surface-to-volume ratio
HC: heat content, Mx: dead fuel moisture of extorgtWAF: wind adjustment factoF¢rnandes et al.,

2006.

2.5. Fire models

Fuel characterization and fire models grew in parand were mainly developed by the
American, Canadian, and Australian scientific comities. The concept of fire model was
actually developed in the USA to accommodate thaildd and complex fuel inputs required
to simulate surface fire spread using the so-c&tlethermel model. Embedded in a variety of
fire behavior modeling systems, these equationsirhecvery popular and a quasi-standard
model in the wildland fire behavior research. Theut variables are listed ifable 5 Three
other input variables are also required in the Bottel model: fuel moisture, topography, and
wind.

Particle properties
Fuel load [kg/m?]

Particle classes Surface-to-voluaim2/m?3]

0.0<0.6cm measured/estimated measured/estimated

Dead 0.6<25cr measured/estimat constar
25<7.6cm measured/estimated constant

Live Herbs measured/estimated constant
Woody measured/estimated constant

Fuel bed properties

Depth [m] measured/estimated

Moisture of extinction [% measured/estimat

Particle density [Kg/m constar

Total mineral content [%] constant

Effective mineral content [%)] constant

Heat content [Kj/kg] constant

Table 5.Fuel inputs irRothermel (1972fire spread equation.
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FARSITE (Fire Area Simulator) is a fire behaviodagrowth simulator Kinney, 200 that
uses spatial information on topography and fuetsh@lwith weather and wind files. It
incorporates the existing models of surface fik@thermel, 197, crown fire {/an Wagner,
1977 Rothermel, 1991Van Wagner, 1993 spotting Albini, 1976), post-frontal combustion,
and fire acceleration, into a two-dimensional firewth model. Inputs are required in a raster
format (Table § and the simulation outputs can be either in dorear raster formatHigure
14). Since FARSITE uses the Rothermel equation, tipeiti variables required to simulate
surface fires are already known. For the simulabbrrown fires, the quantification of the
crown fuel properties is also needed.

Raster
theme Units Usage

Elevation m, ft Lsed for adiabatic adjustment of temperature and humidity from the
reference elevation input with the weather stream.

Slope percent, *  Used for computing direct effects on fire spread, and along with
Aspect, fordetermining the angle of incidentsolar radiation (along with
latitude, date, and time of day) and transforming spread rates and
directions from the surface to horizontal coordinates.

Aspect T Az See Slopa.

Fuel model Frovides the physical description of the surface fuel complex that is
used todetermine surface fire behavior (see Anderson 1882). Included
here are loadings (weight) by size class and dead orlive categories,
ratics of surface area to velume, and bulk depth.

Canopy percent Used to determine an average shading of the surface fuels (Rothermel

COVET and others 1986) that affects fuel moisture calculations. It also helps
determine the wind reduction factor that decreases windspeed from
the reference velocity of the input stream (6.1 m above the vegetation)
to a level that affects the surface fire (Albini and Baughman 1973).

Crown m, ft Affects the relative positioning of a logarthmic wind profile that is

height extended above the terrain. Along with canopy cover, this influences
the wind reduction factor (Albinl and Baughman 1979), the starting
position of embers lofted by torching trees, and the trajectory of
embers descending through the wind profile (Alini 1973),

Crownbase m,ft Used along with the surface fire intensity and foliar moisture content

height to determine the threshold for transition to crown fire {Alexander 1988;
Van Wagner 1977).

Crownbulk kg mr? Used to determing the threshold for achieving active crown fire

density ot (Van Wagner 1977, 1993),

Table 6. FARSITE inputsKinney, 200

Figure 14. Output FARSITE software.
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NEXUS, another crown fire hazard analysis softwases the/an Wagner (1993¢rown fire
transition criteria to link surface fire behavioodels with crown fire behavior models and to
compute a crown fire potential indeXdott, 199%. CBD and CC determine the likelihood of
active crowning, and CBH determines the risk thatidace fire is transformed into a crown
fire.

To fit the requirements of several users and spstsaa flexible and customized system
called BehavePlus was designed Aydrews et al. (2005)It can be used for several
applications like the projection of an outgoingefithe planning of prescribed fires, and
training. Primary modeling capabilities include fage and crown fire spread and intensity,
safety zone size, size of a point source fire, dwatainment, spotting distance, crown scorch
height, tree mortality, wind adjustment factorsdaprobability of ignition. BehavePlus
provides the 13 standard fire behavior FM of AndersBecause they may have different
requirements, users can introduce their own paeme¢d build and save a FM closer to
reality (Figure 15. Thus, the BehavePlus software allows custonamatoffering several
options for inputs and outputs (graphical or GISdah dynamics, vector and raster) and
independent models for several calculations (widgustment factor, dead fuel moisture
contents...). The software and its documentationbeadownloaded dtttp://www.fire.org/

B BehavePlus 3.0.0 SURFACE Module Dptions =1 E3

Fuel & Moisnice] |Wmd5pctd | Directions | Stope | Outputs | P-G Cutpute |

5k | = e | arHome | rndex |

Fuelis entered bt =]
uel 1s entered as o ; 3 d
& fisel models m SURFACE Module Fuel & Moisture

v

§ = 3 ptions
T o Rt Q; g Input Options
 palmetto-gallberry

two fiel models,
2-dimensional expected spread Short Description

- two fusl models, This page controls the mput of fuel and moisture parameters mto the SURFACE
harmenic mean. Module

two fuel models, .
» Options
area weighted (lke old BEHAVE)

P Fuelis entered as

NMoisture is entered by B fusl modeis.

~ mdividual size class Fuel models are prepackaged sets of fuel parameters representing stylized
fizel situations. Checlung this button allows you to simply enter fiel model

© dead and bve ca
RS KA SRR CRER ST codes rather than a dozen firel model parameters

© moisture scenano.

This is the most common way of mnning BehavePlus as it grearly simplifies
input. If wou have special fuel situations, create a crustom fusl moded and
use it. A Fuel Model Key and photographs are available to help you select

[ one of the 13 standard fuel models.
I Picture ~ Help

B fuwelparamerers ~]

Ok I Cancel
Figure 15. Main GUI of BehavePlus software.

3. Airborne LIDAR systems — Review of applicatiandorests
3.1. Basic principles

Airborne LIDAR systems provide information on thede-dimensional position of any spot
at the Earth’s surface by measuring the return tohéaser pulses. They require accurate
information on the location and altitude of thetfdem, which are provided by combining
differential GPS and INS measuremeriigy(ire 16.

A large number of airborne systems are availabté bmr commercial and scientific use. A
review of all available systems, as well as thadesdations and formulas, can be found in
Baltsavias (1999) Airborne laser altimetry provides reliable eleoat data with high
altimetric (< 0.15 cm) and good planimetric (< Oetf) accuracyAhokas et al., 2003
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LASER
SCANNER;

Figure 16.Airborne LIDAR system$tp://www.fs.fed.us/pnw/olympia/silv/lidjr/

For continental surface altimetry, the laser opeyah the near-infrared region of the spectum
(1064 nm) to maximize the return signal and minartize background noise. LIDAR systems
can be classified on the basisipthe footprint size (small from 0.2 to 0.8 m orgla from 8

to 70 m);ii) the sampling raters the scanning pattern; anidl) the digitization sampling
(multi-echo or full waveform). The footprint sizegends on the divergence of the laser beam
and the altitude of the sensor.

Small footprint systems differ from large ones by tsurface area illuminated by the laser
beam Figure 173 They provide high point density, allowing a dieta description of the
illuminated area. They only sense individual eletaem portions of forest elements (e.g., the
side or the top of a tree crown, a portion of aibhr) thus individual trees can be sampled. As
a consequence, they also often miss the tree tdpiarforests having high CC, they have
some difficulty reaching the underlying ground. Dation of accurate DTM and tree height
maps consequently highly depends on the sampliteg r&., the pulse frequency and the
footprint size.

Large footprint systems provide information on foeest structure rather than on individual
trees Figure 17h. The return waveform records the vertical disttibn of intercepted
surfaces within a wide area. By increasing thedont, the ground is generally reached, even
in dense media, avoiding the disadvantages of sfoaliprints. Since the point density
decreases, the information (crown volume, biomeis) is provided at the stand level and it
is impossible to describe individual forest elemsestich as trees. The separation of the
vertical layers and the estimation of their heigi# coarser.

Figure 17.a) Small and b) large footprint laser beam.
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In forestry, multi-echo and full waveform systemffed in the way they sample the forest
three-dimensional structure. Multi-echo LIDAR syste record at least the first and last
returns Figure 19. Pulse detection is applied on the backscattsigdal by an on-line
system detector that extracts several time-stanmuises from the continuous waveform,
which gives the position of the target.

Discrete Echo
Returns waveform
Amplitude

outgoing pulse

return signal

— 1st return 1st level
(canopy)
canopy
structures
2nd return 2nd level (bushes)
t—e, |ast return ground
time time

Figure 18.Conceptual differences between discrete (left)fatidvaveform (right) LiDAR systems. The
middle figure shows the laser illumination areahiita forest.

On-line peak methods vary according to the manufactwho generally does not provide
information about the implementation of its softexaNone is believed to be more accurate
and reliable than anothevagner et al., 2004 The standard pulse detection methods are:
threshold, center-of-gravity, amplitude local maaichetection, detection of the zero crossing
of the second derivate and constant fractibtallet and Bretar, 2007 They often take
trigger-pulses due to noiseigure 19.

H Emitted impulse H

L L+AC t, tHAT t

Transmitted
power

Reflected impulsa

Received
power

Threshold

t, i t, t

HL Stop pulse H 2. Stop pulse

t, t, t

Digitised reflected impulse

|J|| IIII“E| Ly %

t, t, t

Output
signal

Digilised
output signal

Figure 19.Upper: emitted pulse. Middle upper: received sighiddle bottom: peaks detected by a
discrete system. Bottom: full digitized waveforidagner et al., 2004
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Full waveform systems record the amount of eneegyrned to the sensor. This enables the
user to analyze the waveform off-line in post-pssieg, and thus to use different detection
methods or combinations of them to extract add#ionformation from the data. This also
partly solves the detection problem. The processmsists in decomposing the waveform
into a sum of components, or echoes, with a par&regproach in order to characterize the
different targets along the path of the laser be@he aim is therefore to maximize the
number of relevant peaks detected and to extrace mdormation from the raw signal. The
backscatter signal is often assumed to be a mixiu@aussiansHigure 20, however, other
mathematical functions have been proposed suchhasgéneralized Gaussian function

(Chauve et al., 2007%a

Figure 20. Waveform data (black solid) and the Gaussian corapts(red dashed). The vertical line
symbolizes the position of the point extracted byudti-echo systenersson et al. (2003)oticed that
four points could be extracted in post-processiompared to a discrete system for this particulaseca

For the Gaussian model, the amplitude and the wadthbe obtained-{gure 2). They give
information on the reflective properties of thegtr(\Viallet and Bretar, 2007 These features
can be seen as additional parameters for the pairpbglassification. For instance, the
backscatter signal on vegetation is wider tharhenground, but lower in intensiti?¢rsson et
al., 2009. The waveform registration also improves the igattresolution (or multi-target
resolution) of LIDAR systems, i.e. the minimum Veat distance between two targets likely
to be recognized. In short, pulse peaks separateabbut 0.5 m can be detected, which is
impossible using conventional LIDARI(ig et al., 2001

25 Amplitude
. Laser pulsé ] Last pulse
20¢ — Gaussian model
=
5 15 B |
E l ‘j:‘ul\f Ppsition
D_ \ "
& 10
-
5 13
: 4 : N |
0 ; Pulseywidth

534 535 536 537 538 530 540 541 542
Distance (m)

Figure 21.Example of measured vs modeled waveform from atfsl®wing also the amplitude and
width for a certain pulse{fagner et al., 2006
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3.2. Feature extraction techniques

Extraction of forest information from LIDAR data mb involves distribution-based
analyses and individual tree-based analyses. Tlake recale and accuracy requirement in the
forestry information compatible with the LIDAR sgst acquisition mode. In the distribution-
based analysis, the forest variables are assessedthe point cloud through predictive
models. In the individual tree-based analysis ngighborhood information of the point cloud
is used to retrieve canopy biophysical charactesigtrown size, individual tree height, tree
location...). A third hybrid analysis combines those.

3.2.1. Distribution-based analysis

Based on the point cloud distribution at the stanglot level, this method sets statistical
relationships between tree characteristics measuretthe field and LIDAR data. These
correlations are often obtained by multiple regessBoth large and small-footprint metrics
have been used as predictors in regressions opa@metric models for the estimation of the
mean tree height, the basal area, the stem nuitigerolume, the biomass (e.@lgesset,
19973 19974 Lefsky et al., 1999Magnussen et al., 1998/eans et al.,, 1999.im et al.,
2002 Naesset, 20Q2Naesset and Jkland, 2Q0Rlaltamo et al., 200gband crown fuel
properties Riafo et al., 2003Andersen et al., 200Peterson, 2005

In this statistical approach, the distribution, mhaspecies and height of the trees directly
impact on the construction of the models, thuslloalbration is necessary. Stand delineation
Is another critical factor. Since high correlati@re expected, these methods are sensitive to
the sampling: the selected stands must be as hareoge as possible. Working at fine scale
has the advantage that information at coarse sealdoe easily derived over a large area by
simple aggregation of individual tree values orlxyrapolation methods.

3.2.2. Individual tree-based analysis

If dimensional information on individual trees (blef, crown size...) is accurately extracted,
other canopy structure parameters can be derivad) uggression models or allometric
equations lyyppa et al., 2001Neaesset and @kland, 2Q0Rersson et al., 20QRiafo et al.,
2009). These variables are determined with a considtiexst to avoid site-specific calibration
(Hyyppa et al., 2008 therefore these methods are site independenenVhe statistical
analysis requires many plots or stands to setdbeession models, the individual approach
only involves a limited number of trees, which sfgrantly reduces the cost and time of field
work. The individual tree-based analysis seemset@ Imew direction in forest survey based
on remote sensing and a powerful management toahdovidual overstory tree3fandtberg

et al., 200} Because results have been obtained on diffesgrerimental sites, a comparison
of the distribution-based analysis and the indigldtree-based analysis is still missing
(Hyyppa et al., 2008although a summary of the expected accuracy edonund inNeesset et
al. (2004) Recent development in computer analysis of hgtial resolution images led to
the semi-automated production of forest inventorlemsed on individual tree crown
information (yyppa et al., 2008 Extraction of such an information consists imdfng the
tree location and in delineating the full crowdolugeon and Leckie, 2003Algorithms
developed for high and very high resolution adnzgery can be used with LIDAR data by
replacing the image by a digital surface model (DSMCHM or a normalized point cloud.
Additionally, it is possible to improve these algloms by using powerful ranging algorithms
or knowledge-based approaches. For example, asguim the tree height is known, the
crown size can be roughly estimated by allomefjuagions or field based correlations.

a) Tree location: almost all the methods construct the CHM and fowhl maxima as
best guests for tree locatio®q{ugeon and Moore, 1989The CHM is determined from the
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first laser reflection and locally interpolated epecial griddingnethods. The interpolation
of raw data to construct the CHM has a smoothifigcefand, to some extent, it affects the
success in finding tree top&¢ditberger et al., 200.7The sampling technique can fail in
finding all trees in a forest: the number, positmmheight of tree tops are often erroneous.
This misclassification occurs when some points rargtakenly assigned tree tops or when
neighboring trees do not appear as two maxirgufe 23. Since the local maxima method
lacks accuracy, others approaches have been pabposéberger et al. (200 developed an
algorithm that directly detects the stem positian that requires high density point clouds
and high penetration rates through the canopy.ressgn similar techniques may increase the
accuracy of tree location.

Missed good height Double tree count

LiDAR Measurements

@ Side height

© Good height
® Incorrect height

== Interpolated surface

Figure 22.Trees erroneously retrieved through LIDAR data siamg) Trees height® and @ are
correct because LIiDAR returns intercept tree pggiiow). Tree heigh® is incorrect because the
LiDAR return is from the side of the crown (blug)Tree is counted as two stems (and heights)aae t

forked or irregular tree crowndimble et al., 20083

b) Full crown delineation: crowns metrics are useful to accurately deriveeiothee
and stand parameters. They are often used in allien@guations or in statistical analysis to
estimate the biomass or the CBD. The full crownnggition can be divided in three major
steps:) the 2D crown delineation (projected maxima arg@athe measurement of the crown
length; iii) the modeling of the 3D crown shape or, at ledlse assignment of its
characteristics to a geometric object (cone, cgind). Two-dimensional crown segmentation
usually involves a CHM and image processing tedmsqfigure 23 such as the valley-
following approach, the edge contour finding at tiplé scales, the template matching, or the
region growing Persson et al., 200Brandtberg et al., 2003 eckie et al., 2003Popescu et
al., 2003 Tiede et al., 2006

Figure 23.Crown delineation superimposed on near-infraredge Persson et al., 2002
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CBH, a critical variable to define crown length,dscussed in section 4.3.2. In order to
model tree crownsfAndersen et al. (2002proposed to fit the point cloud by ellipsoidal

models Figure 24 andKorpela et al. (2007adjusted it to a parametric surface determined
using both the processed LIiDAR data and allometjigations.

Figure 24.Three-dimensional perspective view of three locatind crown dimensions superimposed on
LiDAR (Andersen et al., 2002

3.2.3. Hybrid analysis

Individual tree analysis can be used directly tedmt information at the stand level. A series
of plot or stand-level statistics (number of tremaximum and mean tree height, mean crown
size...) are first derived using the individual tresolation approach. These statistical
properties are then used to predict canopy stra@uthe plot or stand leveli¢/mgren, 2003
Popescu et al., 20p3Vialtamo et al., 2004 Therefore, the method may improve the
prediction accuracy of forest structural informatiout it cannot reduce the field work since
the ground-truth is still neededdyyppa et al. (2008)reviewed the advantages and
disadvantages of the distribution-based and indaditkee-based analysesble 7.

Methods Advantages Disadvantages

Distribution-based - Easy to integrate with present forest - Requires extensive, accurate,

methods inventory practices due to common | representative and expensive refererice
reference plots data
- Strong statistical approach - Without a large amount of reference
- Laser scanning data relatively data, strong possibility of large errorg
inexpensive in operational inventories

Individual tree-based | - Good physical correspondence - More expensive data

methods (existing models) with volume - More complex system to implement]
estimation
- Low amount of reference data needed
for calibration
- Allows precision forestry and
increased amount of information on the
forest areas

Table 7.Distribution-based and individual tree-based analy¢iyyppa et al., 2003
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3.3. Synergy between LIDAR and aerial imagery

The synergy between laser scanning data and hggituteon optical imagery, whether they
are acquired simultaneously or separately, shaulgtove extraction of forest information.
On one hand, LIDAR data contribute to the retriesfaheight and crown shape, which are
missing in non-stereo optical imagery. On the otreerd, optical images provide information
about spatial geometry and color, which are usefuegetation species classification and
health state diagnosisiyyppa et al., 2008 The need for data fusion has been reported by
several authors (e.gBaltsavias, 1999 eckie et al., 20083 A strong criticism against LiDAR
data is that they are not homogeneously distriuted, there are gaps between two
acquisitions especially when using small footpitifidAR. Thus, crown 2D delimitation is
more accurate in aerial images, in particular wtremvns overlapl(eckie et al., 2008 In this
case, more weight should be put in the optical.ddtavever, they often treat low vegetation
in canopy gaps as crown vegetation, when LIDAR datald easily remove that type of
errors. Crown delineation is well established inrdad or managed forests, but over
unstructured forests like in the Mediterranean toes, more research is needéd/(ppa et
al., 2009. Data fusion could also contribute to improvecspee identificationPersson et al.
(2005) classified the Scandinavian forest: Norway spr(Rieea abie}y Scot spine Rinus
sylveste), and deciduous trees. They combined LiDAR-deriwegtrics and optical spectral
features, claiming a substantial improvement. Sggeentification can be very useful in the
setting of allometric equations’¢pescu et al., 200Xorpela et al., 2007 For instance,
Popescu et al. (2003gtrieved single tree crown diameters over the CbhijMapplying a
filtering technique where the initial values westimated using allometric equations. Those
can be also very useful to detect erroneous segtn@mt The coupling of optical imagery and
LIDAR data could help to measure low vegetationadose the latter often introduce a
misclassification between ground and non-grounadhtgoRiano et al. (2007¢galculated the
NDVI (Normalized Difference Vegetation Index) onriaé images to detect vegetation and
then decreased this misclassification. Fusion miag &elp to extrapolate forest spatial
variables when LIDAR data are not availablzipayah et al., 2000In this case, however, a
radiometric calibration is required. The correctribontal and vertical segmentation of a
forest obviously remains a challenge but data fuseems to be very promising. Other
methods can be found ersson et al. (2004hlyyppa et al. (2005)Suarez et al. (20089nd
Maltamo et al. (2006b)

3.4. Tree species classification using LIDAR data

Tree species identification is particularly intémeg in forest study, inventory and
management. The spectral information containediribome or high-resolution spaceborne
multi-spectral images generally provides good tssBrandtberg and Walter, 1908
Airborne laser scanning data have been also tdetetassify tree species. One considers
three stepsi) delineation of individual tree crowns by segménta of the CHM and/or
optical imagery;i) extraction of individual tree characteristiceeérheight, crown diameter
and shape...)jii) classification of tree species based on the etddafeatures using an
appropriate classifieloimgren and Persson (200sted species classification (Scots pine
and Norway spruce) using an individual tree croppraach. They fitted a parabolic surface
to the laser point cloud and could classify plagpgcses by their crown shape with an accuracy
of about 95%Brandtberg et al. (2003ised LIDAR data under leaf-off conditions to segine
individual trees. Classification of deciduous spsciwith different indexes suggests a
moderate to high degree of accuraegrsson et al. (200Gdentified species combining the
tree features extracted from both high-resolutaset data and high-resolution multi-spectral
images.
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4. The Role of LIDAR in fuel mapping

Fuel properties influencing fire behavior are assdsat different scales. If fire scientists are
interested by the particle level, fire managerdquriarge scale maps. Knowledge about the
vertical structure is critical to estimate fuel peoties in forest environments. Passive remote
sensing does not allow to penetrate deeply intatptanopies. This implies poor DTM
retrieval over vegetated areas and consequentlygant height estimation. LIDAR systems
better deal with multi-layered forest reality. Theften reach the ground, even in dense
forests, and the backscatter signal is a functiothe canopy structure. We identified two
approaches to map fuels using LIDAR data: directiadirect methods. The first ones intend
to determine fuel properties directly from the gailtoud. The second ones pretend to classify
the forest environment in terms of FT. The disyd#tween the resolution of the LIDAR and
the particle size of fine fuels (0 to 6 cm) anditherizontal arrangement on the ground,
which does not allow its measurement, justify th@irect methods. Thus, direct methods are
quantitative because they permit the retrievali model input parameters using LIDAR
metrics, and indirect methods are qualitative bseahe forest is first classified into pre-
defined FT which can be then assigned to FM (se@ib).

4.1. Fuel scales

Many people and research organizations are inegtestfuel maps. Depending on the needs,
different methods are available to study and dbesduel characteristics. Most of the time, it
is very difficult to obtain an information that amsr a specific question in a particular
situation Qllgower et al., 200). Moreover, fuels can be assessed at multiplescéiom the
particle level to the landscape levéhfle §.

The physical, chemical and thermal fuel propertes determined at the cell, individual
particle or element level (leaf, spine, stalk, twigranch, stem...). Particle properties
contribute to predict wildland fire intensity andverity. They have consequences on fire
suppression and, therefore, are required to irgerre results of flammability laboratory
experiments. Since collecting fuel properties as tlevel is costly and time consuming,
databases like the one built Byhen et al. (2003are very useful. Moreover, that kind of
work (section 2.4) helps to standardize fuel coibec methods, describing the source, the
reliability and protocols. The role of LIiDAR in fuenapping starts at the level of an
individual tree: the different approaches to measur estimate crown fuel properties have
been reviewed in section 3.2.2. For instance, delidiomass is usually achieved using
allometric equations based on tree metrics. Not# ®@GBD estimation requires prior
knowledge, like the foliage biomass, at the paatielvel. At the plot level, even shrub fuel
properties can be assessed using LIDAR. The ddéscripf that kind of surface is
accomplished by retrieving shrub canopy mean hgigltcentage cover and, if possible,
species identification. In a traditional forest eémory, percentage cover is determined
visually, thus subjectively. Moreover, height measoents are critical since they are often
heterogeneous. Other levels are however needegktménagement, ecological applications,
experimental burns, risk maps, etc. There is a loagjtion to use optical or radar imagery,
but they cannot “see” through the canopy and tladiapresolution of radar images was, till
recently, quite poor. Thus, LIDAR is still the mastcurate way to map fuels at the stand
level.

At the landscape level, the segmentation of foeestronment in FT and their assignment in
FM is the most elegant way to map fuels. Howevperating small footprint LIDAR systems
is still expensive, which limits their applicatiever a large area. Spatialization techniques to
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retrieve accurate fuel information at the landsdapel are therefore necessary. They consist
in searching correlations between optical images lADAR data and to extrapolate them
where only optical (airborne or spaceborne) dat¢eaaailable.
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- Biophysical parameters
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- LIDAR

- Cube method
- Field sampling
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b - Structural and
Particle biophysical parameters
2\ o - Biochemical analysis - Input parameters fier f
el 4 behavior models
cell - Combustion behavior

Table 8.Fuel scales, fire models, and fuel acquisition eledfromAllgower et al., 2004
4.2. Direct methods — Mapping fuel properties witlLiDAR

There are few studies using LIDAR to estimate fuelperties. With small footprint, we only
identified the work oRiafno et al. (2003Morsdorf et al. (2004andAndersen et al. (2005)

4.2.1. Canopy closure

Vegetation cover is inversely related to the lgagse penetration rate into the canopy. The
laser-generated tree closure is the number ofrafections divided by all reflections (from
the trees, the understory and the grouhtans et al. (199%ndRiarfio et al. (20033howed

a good relationship between CC and tree closunegusespectively, full waveform large
footprint and first and last echo data. CC is vesliablished with LIDAR taking advantage of
its capacity to penetrate within canopies. It isrendifficult to measure canopy cover with
optical data because of the underlying grass oremgreshrubs that increase the
misclassification. However, CC is the fuel propdrtigt is most easily determined by remote
sensing Chuvieco et al., 2003
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4.2.2. Crown base height

CBH is a fuel property used to estimate surfaceaadn fires. Although more emphasis has
been put in the determination of tree height amsvardiameter, CBH is a variable retrievable
using individual tree-based analyses/{ppa et al., 2001INeesset and Gkland, 2Q0Rersson

et al., 2002 Pyysalo and Hyypp4&, 200RBloimgren and Persson, 2QMMorsdorf et al., 2004
Riano et al., 2004 Popescu and Zhao (200&cently identified a trend to overestimate CBH,
which was already noticed by other authors. Todase accuracy, they developed new
methods such as the multiband height bins (voxelpharacterize the vertical structure of
individual tree crowns.

Emerging small-footprint full waveform systems gmemising to improve individual tree
crown assessment because they permit extracticadditional points within the crowns.
Chauve et al. (2007oticed an increase of more than 100% in densepies. Therefore,

full waveform LiDAR improved the accuracyifure 25 of crown metrics measurements
(Holmgren and Persson, 2Q@ersson et al., 200Reitberger et al., 2007

40
%y
L\'\-\
30 i
e

ol o~

m{(

0

Height [m]

0 2
Poirts per layer [%]

i A AT

Figure 25. Crown base height defined as the height thatesponds to 0.15% of the total number of
points per segmenRgitberger et al., 2007

Despite some improvement in these approaches, GBhbt very useful by itself to fire
behavior studies. As a fuel property, it is inseps from the understory vegetation height. It
means that it makes no sense to define CBH withootrate information on the fuel model
below the canopy that may effectively reduce theinal CBH valueAndersen et al. (2005)
established predictive models between several LiDAdRrics and field inventory at the plot
level. Riafo et al. (2003did the same thing at the stand and tree levells aviclustering
technique based on height percentiles. With laogepirint LIDAR, the estimation of canopy
base height was performed either by analyzing odeliog the waveform or by regression
models Figure 26).

4.2.3. Crown bulk density

CBD is described as the foliage biomass dividedheycrown volume. Therefore, large tree
branch biomass is not included since it does neg valuence on fire behavior. However, the
laser beams target all material in the canopy, BB® cannot be directly assigned to the
cloud point returned by tree crowns. CBD can bbegiempirically estimated from LIDAR
metrics and field measurements or from the folibgenass and crown volume. Empirical
methods are common in large footprint data analySeske et al., 2002Hyde et al., 2005
Peterson, 2005Andersen et al. (200%¢stimated CBD by establishing predictive models
between LIDAR heights and field survey measuremantthe stand level in a coniferous
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forest with Douglas firRseudotsuga menziésiind western hemlockguga heterophylla
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Figure 26. Gaussian-fitting method used to derive CBH atstlamd level from LVIS data. The lowest
Gaussian above ground (red) is assumed to repraleribwest canopy returi?éterson, 2006

However, the calculation of the foliage and crowioniass separately, using allometric
equations, led to better results. Several allome&quations are provided in the literature for
different species as a function of tree charadtesigFigure 27. Riano et al. (2004used
allometric equations to predict crown and foliageniass. However, they studied an
intensively managed homogeneous Scots pine forkstenindividual crowns were easy to
segment. No model validation has been carried nutorests with a complex structure
(Andersen et al., 2005Popescu (2007nvestigated the LIDAR accuracy to derive indivadlu
tree measurements (height and crown width) and thiggact on individual tree components
biomass estimations (foliage and stem biomassyusiometric equations. Instead of crown
or foliage biomass, almost all works aim to predattl above ground biomaskldesset,
1997k Means et al., 20QMHyyppa et al., 2001Drake et al., 2002
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Figure 27. Canopy bulk density allometric equations at tlemdtlevel as a function of tree heigBtpit
and Reinhardt, 2001

4.2.4. Low vegetation cover

Low vegetation is very important in fire hazard dind behavior estimation since it dries very
fast and regrows quickly after a fire, providing shof the new fuels for surface fires. Large
fires also always start and spread in this laygerEwithout upper vegetation, the height of
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small vegetation — grass, shrubs, small trees roiseasy to retrieve by remote sensing.
Contrary to optical imagery, LIDAR data can haveiaes difficulties to detect it and
misclassification between ground and low vegetatifian occurs. This variable is however
crucial not only for fuel mapping purposes, bubais retrieve accurate DTM. Because the
height is the primary characteristic of fuel loadthis type of vegetation, there are different
FT where the single difference is the vegetatiagtite

Naesset and Bjerknes (200é$timated the mean height of a young forest usirgmall
footprint LIDAR (first and last echoes) and foundlues ranging from 1.5 to 6 m with an
average of 3.8 m. They compared the ground truth laser-derived canopy height metrics
and densityRiano et al. (2007subtracted the DSM and the DTM generated by theARD
data provider: they noticed a high misclassifiqatitegree between vegetation and ground in
plots covered by low shrubs. This effect also oemlim higher but dense shrubs, fixing shrub
heights unrealistically close to zero. For fuel piag purposes, they calculated the DTM by
removing the vegetation signal using airborne imagad also improved the DSM: canopy
heights ranged from 0.5 to 1.6 m with an average ®m.

Surface vegetation height is difficult to assessagisarge footprint LIDAR because ground
and low vegetation signal are difficult to separdtall waveform small footprint LIDAR
processing methods offer new opportunities to meadow vegetation. They permit
extraction of additional points within the undergtoFor instanceChauve et al. (2007b)
noticed an increase of more than 100% in this layey et al. (2004)and Persson et al.
(2005)suggested to use the pulse width and intensitietect the presence of low vegetation
because the pulses reflected by plants tend targerlthan ground hit§igures 28 and 29
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Figure 28 Histogram of width points, ground (black) Figure 29. Width based classification, ground
and vegetation (greyPersson et al., 2005 (black) and vegetation (yellowipérsson et
al., 2005.

Live vegetation is not the only factor influencitige width and intensity of the peaks: terrain
slope, dead vegetation over the ground, etc. aldoce wider peaks and decrease intensity.
Point cloud segmentation using peak intensity amdthms consequently still challenging.
Such a classification has been performed in urlvaasawhere the response of the different
targets is easier to recognize. The applicatiomatoral environments seems to be a hard task
since it is poorly stereotyped. However, improvetaem vertical resolution introduced by full
waveform systems can be useful to differentiate Wegetation from the groundrigure 30.

The waveform detection allows an accurate deterioimeof the peaks of overlaid pulses
down to a target separation of about 0.5 m only.
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Figure 30. Low vegetation and the limits of multi-targetokgion (Hug et al., 200%

4.2.5. Understory canopy height

The structure and spatial distribution of undessteggetation (percentage cover and height)
is critical in fire behavior models, but their pan@terization is tricky. Besides all the
problematics developed in section 4.2.4, the undersayer grows vertically underneath the
overstory layer, increasing the difficulty in segiamg the two layers. The contribution of
lower vegetation in the backscatter signal jusifierther studies. Some authors maintain that
LIDAR data need to be corrected from shading effedt does not only concern the
understory layer but also lower foliage and brascbleaded in the same tree crown. This
factor can also increase accuracy in CBH estimation

The main effort has been put in depicting the ealtstructure of trees using both large and
small footprint LIDAR. The extraction of understoryegetation and their specific
characteristics was poorly studiedarding et al. (2001used SLICER large full-waveform
data to characterize multi-layered forests. Thesoduced an occlusion factor present in the
backscatter signal due to the upper canopy angriend noise. The goal was to retrieve a
canopy height profile (CHP) that better describégrast environment vertically=(gure 3).
They applied an exponential transform to the wawefdescribed in_efsky et al. (1999)
Calculation of CHP relies on assumptions aboutrtte of occlusion of specific canopy
surfaces. In consequence, it is not applicablelltdypes of forests. When only discrete
LIDAR are available, a similar correction must berfprmed.Riafno et al. (2003used the
same transform to retrieve CHP and simulated fudlveform from discrete data. With a
cluster analysis, they segmented the overstory amderstory and then calculated the
understory cover as the ratio of the number ofrlasams that hit the understory to the total
number of ground hitsVialtamo et al. (2006afirst calculated the cumulative proportional
canopy densities to retrieve CHP and then analydsether the height distribution of laser
hits were multimodal or not: if multimodal, the wtying canopy structure was considered as
multi-layered. This work was performed to retriestends with cut trees. The number and size
of logged trees were predicted using regressionetsod

No work was identified that extracts understory relteristics (height, percentage cover)
using small-footprint full waveform. However, thige of data may increase the accuracy of
such measurements. First, waveform processing metappeared as a promising technique
to detect understory, as noticed in section 4315 (et al., 2004Persson et al., 200Ehauve

et al., 2007h Second, the processing of large footprint fuhweforms showed that its
decomposition in three main Gaussian componergsegtrunderlying vegetation and ground)
was possible.
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Figure 31.Steps converting a raw SLICER waveform to a CHRdw waveform a single laser pulse;
(b) waveform above mean background noise summedtaridpeak, and end of the ground return; (c)
cumulative distributions of canopy closure (solEgsuming that ground reflectance is half thathef t
canopy, and transformation to projected plant afgashed); and (d) normalized, incremental
distribution of plant area above the grourida(ding et al., 200).

4.2.6. Conclusion

There are few studies of fuel properties estimatdore emphasis has been placed in the
extraction of forest variables. Most of the apphwsc only concern the estimation of tree
characteristics. Despite this effort, fires do aoly depend on tree crowns. More attempts are
needed to improve the vertical segmentation of @estoenvironment. The height and
percentage cover of the lower layers, whether arsbery is present or not, are of primary
importance to predict fuel load.

In low vegetation, two approaches must be accouimted he first one takes place when the
laser trip does not find upper vegetation and tteroone when aerial vegetation interferes
with the laser beam. In both cases, small footgultvaveform offers a new perspective not
yet explored. In the first approach, the main peabls the misclassification between ground
and non-ground points. New classification technsgsi@ould be based on the features that can
be extracted from the waveform: additional poingaiast multi-echo systems, shape, peak
width and intensity. The fusion with multi-spectigptical data may also help to identify
whether the laser beam hits vegetation or not.

This misclassification also occurs when there ah@egetation. Moreover, one must take
into account the influence of the upper vegetatiothe backscatter signal. Although large
footprints have been successfully analysed withoegptial transforms, using the same
technique on full waveform small footprints is Istih issue.

4.3. Indirect methods — Fuel type classification

Most effort on classification methods over foresvieonments emphasized land cover maps
that aim to identify tree species and their horiabgradient along the landscape. This task
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has been successfully performed using passive esrsensing, however its inability to

penetrate in forest canopy increases the diffiesiltin fuel mapping. Rather than vegetation
identification, a fuel map must deal with the honial gradient and mainly vertical forest

structure. The classification through multispecirabges can identify certain FT, usually

those which can be assigned to land cover. Foangst it is possible to estimate some
vegetation properties to derive fuel propertieghsas the total living and dead biomass in
grassland and shrublands. However, since heigkhesbest predictor of total biomass in

surface vegetation, these are coarse estimatidresydrtical structural component is missing
in the optical data, thus image classification®mfjust discriminate vegetation types more
than fuel attributes. Recognizing the limitationagtical imagery to directly mapping fuels,

some research works correlated FM with some vagatatharacteristics. This approach

assumes that some biophysical properties can headely classified from remotely sensed
imagery and, after, assigned to fuel charactesistitowever, fuels are not always related to
land cover maps or vegetation characteristics,guolg with the same land cover can have
more than four FMKeane et al., 2001

LIiDAR allows three-dimensional measurements of iaitered forests. Section 4.2 reviews
the potentials and limits to estimate crown andasar fuels. The measurements of some
surface fuels properties as those of litter areumattainablegoal. First, the particle size
influencing fire behavior (0-6 cm) is incompatibigth LIDAR spatial resolution. Second, the
horizontal disposition over the bare soil and e porosity make it impossible to measure
their depth or even their presence.

Indirect methods to differentiate FT are classtfma techniques like those used in optical
imagery. Since the backscatter signal is a functbthe forest structure describing the
spatial arrangement and the metrics of the FT are well establishedugy modelers, one
expects that LIDAR data be a major factor in thassification of FT. InFigure 32that
presents full-waveform amplitudes distributed irasp for four different zones, one can
recognize some patterns that are likely to be aesigo the FT oFigure 33

Fuel type |

> 60% Grass  ——py

Mean height
(0.30-0.60 m)

> 60% Shrubs & Mean height

| i i ! ! _
" ) W
| g L h —
w0l ‘; 4 ¢ 't < 50% Trees (>4 m) (0.60-2.00 m)
1 k| ; i |
s s R, ~ s
el ype
.

Mean height difference L
. between shrubs and (rees

> 50%

>0.50m

Trees (=4 mH > 30% Shrubs i—<
Me:

:.ﬂf;.";'fd&,;,u i

Figure 32.Waveform samples inserted in a 3D  Figure 33. Prometheus classification fuel types
volume consisting in small 3D cells (voxels). The systemRiafio et al., 200R
amplitude of the waveform is assigned to each
voxel. Upper left: pine trees; upper right: spruce
trees; bottom left: deciduous trees, bottom right:
road surrounded by grass and some tré&sgson
et al., 200%.
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Figure 34shows the extracted points corresponding to theesaaveforms in the upper left
and bottom left displayed iRigure 32 A similar and complementary analyze could bedtrie
here.

1=

“?46' .‘

Figure 34. Extracted points from LIiDAR waveform data cormsging to upper left and bottom left of
Figure 33.

4.4.1. Methodology

Indirect methods aim to study the correlation betw#he LIDAR backscatter signal and the
forest metrics well established in terms of FT.sThilbject has been poorly studigtutiu et

al. (2008)fusionned LiDAR metrics (discrete system with 2@8nts/m?) with multispectral
QuickBird imagery to classify FT. They also compmhrthe accuracy of fuel maps
classification using the imagery alone, the LIiDARn® and the two data together. The
derived metrics were eleven height bins normali@getmber of points per volume unit by
total number of points) with the same horizontahelnsion of images pixel (2.5 m x 2.5m).
With an average of 2.5 points/m2 they had 16 pguatscell. The fusion was made with three
techniques: LIDAR-multispectral stack, principalngoonents analysis and minimum noise
fraction. They identified seven FM in the studyaamnodels |, 2, 4, 5, 7, 8 and 9 described in
Table 9 A total of 27 regular polygons, each with a radof 11 m, were selected. The
supervised classification was performed using patamdecision rules (through maximum
likelihood and Mahalanobis distance) in a per potehracterization of fuels. The accuracies
retrieved were 76.52% for the QuickBird image aland 90.10% for the best fusion method.
Therefore, using LIDAR derived metrics obviouslgreases the accuracy.

Fuel Model (FM)

Grass and grass dominated

FM 1 — Short Grass (0.30 m) Short live and deadgyrgrass-tundra, grass-shrub combinations (1&hpru

FM 2 — Timber (grass-understory) Open shrubs lamdispine or scrub oak stands which cover 1/3 t@P{Be area

Chaparral and shrub fields

FM 4 — Chaparral (1.82 m) Stands of mature shruB2 in or more, live and dead fine woody materiathe crowns of a
nearly continuous secondary overstory

FM 5 — Brush (0.60 m) Young and short shrubseglitttad material and grasses, in the understohy,digface fuels loads

FM 7 — Southern rough Stands of shrubs betweerafd50.82 m high, Palmetto-gallberry understory-pnerstory sites,
occasionally black spruce-shrub combination

Timber litter

FM 8 — Closed timber litter Closed canopy standstuofrt-needle conifers or hardwoods. Needles, &aaed occasionally
twigs in the understory

FM 9 — Hardwood litter Long-needle conifer and heodd stands, closed stands of long-needle pine pilederosa,

Jeffrey, red pines, and southern pine plantations

Table 9. Description ofAnderson (1982fuel models.
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Figure 35. (left) FM 8 and (right) FM 1Geielstad and Queen, 2003

They conclude that obstacle density is charactrm®ea unimodal distribution in FM 8 and
by a multimodal distribution in FM 10=(gure 3§. Therefore, the obstacle density allows to
differentiate surface roughness. Based on fieldesythey suggest other analyzes such as the
linear relationship between total fuel load andtatle density. They claim that large logs and
branches in forest floor dominate the roughnessasigven in plots with significant shrubs
and seedling-sapling components, and that the dbstiensity is primarily a function of
coarse woody debris. Howev@eielstad and Queen (20@ipped the ground points by hand
because their separation from coarse wood on tlestfloor was critical.
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Figure 36.Laser Height Profiles for two plots representatoféd-M 8 and 10, respectivelg¢ielstad and
Queen, 2008

4.4.3. Conclusion

The measurement of surface fuel properties is nqeaed using this approach. We
emphasized the disparity between the LIDAR resofuand the particle size of fine fuels,
their horizontal arrangement near the ground, &edpoor porosity of litter which do not
facilitate the separation from the ground. Howeteese works suggest that it is possible to
find LiDAR-derived metrics, associated or not withultispectral imagery, to distinguish
some FT. For instance, surfaces covered by longleeand short-needles are classified as
two different FM even if they have similar CH. Thiter depth is not retrieved by LiDAR,
but LIDAR metrics can depict the canopy condititimst are specific for a certain type of FM.
In brief, LIDAR metrics are better suited to deberthe overall forest canopy condition that is
optimal to feed a FM. This technique is actuallyitar to field reconnaissance using photo
guides. Moreoverseielstad and Queen (20Gstlggested that laser-derived estimations of FM
were more consistent than field reconnaissance. N®®AR metrics and stoical analyzes
deserve to be developed to establish robust dieasiin methods. These metrics can be
achieved by a direct approach (CBH, CBD, biomasBHD.), canopy height variances
(Blaschke et al., 200&imble et al., 2008 more consistent ecological and spatial indexes
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(connectivity, proximity, neighborhood of forestistture...). Among others, one can cite the
SHEI or the DIVI. The robustness of classificatiorethods can be also increased with
gradient modeling proceeding from different souré¢es example, a north-facing aspect has
more chance to develop a specific FT than another.

Fuel type classification also deals with segmeatatf forest environment into stands. Their
delimitation can be ambiguous in field reconnaissaar by image interpretatiomesset,
2002. The segmentation accuracy increases when usmggssion models to estimate the
others forest variables (mean height, stem numtesal area, volume, biomass...). The
success of this type of analysis is very dependanthe stand delineatiomaesset (2002)
noticed that the use of digital image and lasen datautomated segmentation procedures
should be considered to take full advantage okthectural properties inherent to laser data.

Conclusion

Fuels have been traditionally mapped by field syrs@mpling, their spatialization achieved
by field or imagery reconnaissance. It is theretotene and cost consuming task. Thus, there
IS a great interest in studying the potential ahote sensing to map fuels. Due to their
capacity to describe the horizontal and verticad$o structure, LIDAR are the most powerful
tool to achieve it, specially when other remotessam techniques are ineffective (e.g., radar,
optical imagery). For instance, we showed theiracép to directly retrieve fuel properties,
which is a great improvement in fuel mapping. Lasgeas can be also processed, reducing
the time and effort spent in this task. Finallyythecreased the accuracy compared to field
measurements that are subjective and not alwayseasplement.

Moreover, LIDAR is recognized as the most accutatdinology to retrieve the DTM over
forests, thus providing the other variables usedireybehavior models: elevation, aspect and
slope. Despite these innovations, LIDAR systemsliariged. For instance, the separation of
ground from low vegetation returns is still difflcuTherefore, DTM extraction is directly
related to the measurement of low vegetation and versa, thus improvement in these two
layers is a challenge in fire behaviour studiesisTis actually more critical in the
Mediterranean reality. Here, the environment israti@rized by shrublands and complex
forest structures, with understory, therefore meqeosed to fire events. However, most of the
methodologies have been tested over boreal, dacsdand managed forest with little lower
vegetation. Thus, more emphasis has been givemettrée canopy characterization and it is
unclear whether these methodologies still workadrin such complex forest structures.

FT classification should be taken into account tuéhe LIiDAR inability to measure some
fuel properties. New LIDAR metrics and more robcisissification methods must be studied
to increase the accuracy in the whole set of F$texg on the studied area. Another limitation
of LIDAR data is the poor spatial and temporal cotsre management and suppression need
fuel maps at the landscape level. Moreover, veigetas a dynamic target. Correlations
between LIDAR metrics and satellite images (vegatandexes, texture...) have been poorly
studied, although they are complementary. On onedhahe limit of passive optical
measurement to penetrate in the canopy can be quuigg LIDAR data. On the other hand,
the lack of high spatial and temporal cover of damehnology can be found in satellite
images.

The dialog with foresters and fire researches shoatur more often. It is necessary to have

better and specific knowledge of their needs, daiftfies and limitations. Moreover, to map
fuels, directly or indirectly, accurate field meesments are needed to validate the results.
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