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Abstract :  Wildland fire is a common threat in many European countries, especially in the 

Mediterranean Basin. Every summer in Portugal, Spain, Greece, Italy or France thousands of 

hectares of forests and shrub-land burn and even people are endangered. Since wildland fires 

represent a social and economic risk for the society, there is a compelling interest in 

understanding them to better control them or, at least, to weaken their impact. Providing 

accurate fuel maps is critical to study fire behavior, assess fire hazard, and quantify fire 

effects. Traditionally fuels had been mapped by field survey sampling, therefore a time and 

cost consuming task. Thus, there is a total interest in study the potential of remote sensing 

technologies to mapping fuels. In this report we review the standard methods and techniques 

to mapping fuels using airborne LiDAR (Light Detection and Ranging) systems data.  

 

Keywords: LiDAR, Remote sensing, Fuel mapping, Fuel Model, Forest variables, Wildland 

fire. 
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Introduction 
 
This report aims to review standard methods and techniques dedicated to the production of 
fuel maps using airborne LiDAR (Light Detection and Ranging) systems and to evaluate the 
fusion of LiDAR data and aerial multispectral imagery. Providing accurate fuel maps is 
critical to fire behavior studies, hazard assessment, and quantification of effects. These are the 
three main topics of fire research programs but we emphasize here fire behavior, the key 
variables of which are based on the identification of key variables in fire models. FARSITE is 
one of the most popular semi-empirical model, which has eight input variables retrievable 
using LiDAR techniques. The first five ones – elevation, slope, aspect, fuel model and canopy 
cover – are required to simulate surface fires while the last three ones – canopy height, crown 
bulk density and canopy base height – are required to simulate crown fires. In this report, the 
topographic variables are mentioned because they impact on fire propagation, but the question 
of their determination using LiDAR data is not considered. Thus, we focus on fuel maps and 
review the methods, techniques and strategies that foresters and fire researchers have been 
applying for years to characterize forests. The know-how and the knowledge of the 
requirements of the other actors is crucial to model fire behavior using LiDAR. Therefore, the 
first part of this report is dedicated to the description of how specialists sample the forest 
environment. In the second part, we review the main LiDAR methods and techniques that can 
be applied to retrieve forest variables. Those are not necessarily used as inputs in fuel maps 
but direct extraction has been poorly studied so we wish to investigate the potential and limit 
of LiDAR systems for retrieving them. As far as fuel mapping methods and techniques are 
concerned, we divide them in two classes: direct retrieval of fuel variables and fuel 
classification methods. 
 
1. Fire behavior 
 
Wildland fire is a common risk in most European countries of the Mediterranean Basin, 
United States of America, Australia… Every summer, thousands of hectares of forests and 
shrublands burn and even people are endangered. Since wildland fires have a major social and 
economic impact, there is a compelling interest to better control them or, at least, weaken their 
consequence. Since they spread horizontally, ignite trees vertically, and progress with time, 
they can be viewed as a four-dimensional process. According to Finney (2004), this process 
depends on the ignition source (e.g., lightning, negligence), the fuel bed that is likely to burn 
(e.g., dry needles), and the environmental conditions that facilitate fire spread (e.g., wind, 
slope). 
 
1.1. Types of wildfires and fuel strata 

 
Fire scientists and managers generally consider three types of wildland fires according to the 
fuel stratum where flames spread: ground, surface, and crown fires. A ground fire spreads in 
ground fuels that burn very slowly and the fuel consumption can cause significant injury to 
trees and shrubs. A surface fire burns the surface fuel layer, which lies immediately above the 
ground fuel layer but below the canopy fuel. It is very variable depending on the nature of the 
fuel complex. Finally, a crown fire spreads in the elevated forest canopy that generally has 
higher moisture content and lower fuel load than surface fuels (Figure 1). Crown fires are 
more difficult to control than ground and surface fires, and their spread rate is several times 
faster than surface fires (Rothermel, 1983). Their effects are also severer and more lasting: 
after a crown fire, the mortality of several tree species is expected. 
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Figure 1. Top: aerial fuels with all live and dead materials 
located in the upper forest canopy, including tree branches and 
crowns, snags, moss, and high shrubs. Middle: surface fuels with 
all materials lying on, or immediately above, the ground, 
including needles or leaves, duff, grass, small dead wood, 
downed logs, stumps, large limbs and low shrubs. Bottom: 
ground fuels with all combustible materials lying beneath the 
surface including deep duff, roots, rotten buried logs, and other 
organic material. 

 
According to Van Wagner (1977), there are three types of crown fires: passive, active, and 
independent. In passive crown fires (Figure 2a), often referred to as torching or candling, 
individual or small groups of trees torch out but solid flame is not consistently maintained in 
the canopy. In active spreading crown fires (Figure 2b), also called running or continuous, the 
entire surface/canopy fuel complex is involved but the crowning phase remains dependent on 
surface fuel heat for continued spread. In independent crown fires, canopy fuels burn without 
help from a supporting surface fire. There is no scientific evidence of such fire occurrence. 
 

 

Figure 2. Passive (left) versus active (right) crowning (Scott and Reinhardt, 2001). 

 
1.2. Environmental factors affecting wildland fire behavior 
 
Wildfires arise and persist due to the coexistence of three elements: fuels, oxygen, and heat. 
They constitute the so-called fire triangle. If a single element ends, the triangle breaks and the 
fire goes out. We are interested here in three other elements influencing the spread rate of a 
wildland fire and acting as input variables in wildfire prediction models: fuel characteristics, 
topography, and weather (Figure 3). In the next sections, we briefly discuss the influence of 
topography and weather on fire behavior. 
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Figure 3. Fire spread triangle. 

 
1.2.1. Topography 
Landscape topography has an impact on the environmental conditions, the amount of certain 
types of vegetation, and therefore, has a direct influence upon fire propagation. In the 
following, we focus on the aspect, slope and elevation that are input variables of fire spread 
models and that can be retrieved using LiDAR. 
 

a) Aspect: the aspect is the direction a slope is facing (Figure 4). The solar orientation 
generally determines the amount of heat provided by the Sun and therefore has high influence 
on the amount, condition and type of fuels. South-southwest slopes are more exposed to 
sunlight and often correspond to lighter and sparser fuels, higher temperatures, lower 
humidity and lower fuel moisture. They consequently are most critical in terms of start and 
spread of wildland fires. On the contrary, north-facing slopes are less subjected to fire activity 
than south-facing slopes. They are more shaded, which leads to heavier fuels, lower 
temperature, higher humidity and higher fuel moisture (Pyne et al., 1996). 

 

 

Figure 4. North-facing vs south-facing slopes (NIFC, 2004). 
 

b) Slope: it is the degree of incline of a hill side (Figure 5). The steeper the slope, the 
faster the fire spreads, and it burns more rapidly uphill than downhill (NIFC, 2004). An 
explanation for these two phenomena is that the fuel above the fire is brought into closer 
contact with the upward moving flames. Another concern about steep slopes is the possibility 
that burning materials roll down the hill and ignite the fuel below the main fire. 
A surface fire is primarily influenced by the amount of fuel and the wind speed, but a fire 
starting near the bottom of a slope in normal daytime upslope wind conditions should spread 
faster and over a larger area than a fire starting near the top of the slope (Linn et al., 2007). 
 

c) Elevation: it plays a determining role in the state and amount of fuel. Fuel at lower 
elevation, where temperature is higher, dries out earlier in the course of the year than that at 
higher elevation (NIFC, 2004). High altitude landscapes are mainly characterized by 
grasslands or shrublands, which disappear beyond a variable elevation according to the 
latitude. Elevation affects fire behavior in several other ways, like the amount of precipitation 
or the wind exposure. 
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Figure 5. Steep slopes causing rapid fire spread (NIFC, 2004). 
 
1.2.2. Weather 
Of the three components of the fire triangle, the weather conditions are the most variable over 
time and the most difficult to predict. The fire weather parameters include air temperature and 
relative humidity, precipitation, atmospheric stability and wind. Air temperature varies with 
time, location and altitude. Changes in near surface temperature are caused by the alternation 
of seasons, night and day, and weather. Seasonal and diurnal temperature contrasts can be 
large or small, depending on latitude, elevation, topography, and on the proximity of oceans 
or lakes that smooth them. Surface and atmospheric temperature primarily results from solar 
radiation but, at a smaller scale, it may be caused by a wide fire (Pyne et al., 1996). 
 
Relative humidity is the amount of water vapor that exists in a gaseous mixture of air and 
water. It is usually expressed in percent (1% corresponds to extremely dry air and 100% to 
extremely moist air). Air temperature and relative humidity are inversely related: when 
temperature increases, relative humidity decreases and vice versa. Firefighters can see or feel 
evidence of weather changes, such as wind intensification, rain or increasing temperatures but 
not changes in relative humidity that may have a significant impact on wildland fire behavior. 
Low relative humidity is indeed an indicator of high fire danger: atmospheric water content, 
whether in the form of water vapor, cloud droplets or precipitation, is the primary factor in 
wildland fuel moisture content (FMC) and its resulting flammability because the amount of 
moisture that fuel can absorb from or release to the air largely depends on it. FMC varies over 
time, location and fuel type. Light fuel such as grass quickly gains or loses moisture when 
relative humidity changes. Heavy fuel responds much more slowly to humidity changes. FMC 
is also affected by the amount and duration of a rainfall. Fine fuel reacts rapidly while heavy 
fuel gains or loses moisture more slowly. Intense and sudden showers generally don’t raise 
FMC contrary to light and long rainfalls, when fuel has time to absorb water before it runs off 
(NIFC, 2004). 
 
Wind is the most critical weather variable affecting wildland fire behavior, also the most 
unpredictable in time and location. This variability, especially in difficult terrain, can be a 
problem to firefighter life safety. The wind impacts the fire environment i) by increasing 
oxygen supply, ii ) by determining the fire spread direction, iii ) by increasing the fuel drying, 
iv) by canying sparks and firebrands ahead of the main fire front, causing new hot spots, v) by 
bending flames, which results in the preheating of fuel ahead of the fire spot, and vi) by 
influencing the amount of consumed fuel (NIFC, 2004). Indeed, a strong wind may affect the 
residence time of the fire front by shortening it, leading to a lower amount of consumed fuel. 
One considers two types of winds: general winds are caused by gradients between a high and 
a low pressure system and, as weak winds, they generally do not have great influence on fire 
behavior. Local winds, so named because they are caused by local conditions, are classified in 
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slope wind, valley wind, and sea and land breeze. They are induced by local differences in air 
temperature and pressure. The ground topography has direct influence in near surface air 
temperature, e.g., higher terrains or north-facing slopes warm less than lower terrain and have 
strong influence on local low-tropospheric winds. 
 
To sum up, the most critical fire weather conditions are a strong and shifting wind, very low 
relative humidity, high temperature, unstable atmosphere and dry lightning (Millán et al., 
1998). 
 
2. Fuels 
 
To predict fire behavior, it is convenient to describe vegetation as a fuel. Fuel maps are 
essential to compute spatial fire hazard and simulate fire growth and intensity across a 
landscape (Keane et al., 2001). Fuel is not the primary cause of fire, but it certainly changes 
its behavior, affecting the ease of ignition as well as the fire size and intensity. Correct 
description of fuel properties is then critical to improve fire danger assessment and fire 
behavior modeling. Mapping these properties requires knowledge of the vertical and 
horizontal vegetation structure (Chuvieco et al., 2003). Roughly, one can stratify the vertical 
distribution of fuel throughout the forest. As seen earlier, there are three types of wildland 
fires: ground, surface, and crown fires. Mapping fuels consequently requires to know fuel 
properties in each layer. 
 
2.1 Surface fuel properties 
 
Surface fuels are ground dead organic matter coming from the surrounding vegetation, grass, 
low shrubs and young trees. The physical properties of surface fuels include the surface-to-
volume ratio, the specific gravity (or fuel particle density or mass-to-volume ratio), the load 
by size class, and the fuel bed depth. The chemical properties are the heat and ash contents. 
 
2.1.1. Size and surface-to-volume ratio 
Fuel particle size is critical in fire behavior. The smaller the size of a fuel particle, the larger 
the surface-to-volume ratio. The latter is an important fuel characteristic: the particles lose 
moisture and heat faster when the available surface area is large (Chuvieco et al., 2003). 
Traditionally, four size classes have been specified: 0-6 cm, 6-2.5 cm, 2.5-7.6 cm, and over 
7.6 cm (Albini, 1976). They correspond to moisture timelags (Table 1, Figure 6), defined as 
the time necessary for a fuel component to reach two-third of its equilibrium moisture content 
(Allgower et al., 2004). Higher timelags, which do not influence fire behavior, must be 
considered when studying fire effect. 
 

  

Table 1. Correspondence between timelags class, fuel size 
and duff depth (Deeming et al., 1977). 

Figure 6. Three different size classes. 

 
2.1.2. Fuel particle density 
The fuel particle density is its mass per unit volume. For the BEHAVE fire model, Albini 
(1976) specifies a value of 51.25 kg m−3. This is a standart value for the USA but it must be 
calibrated again for other zones. 
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2.1.3. Fuel load  
Fuel load, expressed in kg m−2 or in t ha−1, is the amount of fuel potentially available for 
combustion. In the particular case of fire behavior, it corresponds to the elements that directly 
influence fire spread and intensity. Its effects however may be antagonistic. As a heat source, 
the fuel availability tends to magnify the reaction intensity. Spread rates may however 
decrease as load increases because the extra fuel becomes an important heat sink, and the 
ignition temperature is not raised (Chuvieco et al., 2003). Much of the response depends on 
the fuel size class, its packing ratio, and whether it is dead or alive. Fuel load is first divided 
into dead or live fuel and second in size classes. 
 
2.1.4. Fuel bed depth 
The fuel bed depth is the average height of surface fuels contained in the combustion zone of 
a spreading fire front. In grassy or shrubby vegetation, it corresponds to plant height (Figure 
7). In the litter bed, its measure is critical when litter and duff coexist, since litter has 
influence in fire behavior and duff not (Brown, 1981). The fuel bed depth directly affects the 
fuel bed bulk density, which is the total amount of fuel potentially available, defined as the 
weight per unit volume of loosely tipped fuel. 
 

 

Figure 7. Fuel bed depth: a) litter and b) shrubs. 
 
2.1.5. Heat content and ash content 
The heat content is the amount of energy per unit weight contained in a fuel particle. It drives 
the energy of combustion. Some fire behavior models use a constant value, e.g., 18.61 MJ 
kg−1 in the BEHAVE fire system (Albini, 1976). It is determined in the laboratory with a 
bomb calorimeter or by near infrared reflectance spectroscopy. It is species dependent and it 
directly increases the rate of fire spread. The total mineral ash content of a fuel particle is the 
unburned fraction. It is also often considered as constant in fire behavior models and is 
usually retrieved by chemical analysis (Allgower et al., 2004). 
 
2.2. Crown fuel properties 
Crown fuels are those that burn when fire leaps from one tree crown to another. Their 
properties, which determine the spread rate and intensity of crown fires, include: canopy 
closure, canopy height, crown base height, and crown bulk density (Chuvieco et al., 2003). 
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2.2.1. Canopy closure 
Canopy closure (CC) is defined as the progressive reduction of space between crowns as they 
spread laterally, increasing the canopy cover (Figure 8). CC influences the fire behavior 
because it affects the amount and proximity of fuel available for a crown fire. It also drives 
the moisture of shaded fuel above ground. A complex cover tends to reduce the wind below 
the canopy, influencing surface fires. Wind adjustment factors (WAF) are required to run the 
BEHAVE fire behavior modeling system. WAF is calculated from CC but also from canopy 
height. 
 

 

Figure 8. Canopy closure(CC) 
 
2.2.2. Canopy height 
Canopy height (CH) affects fire spread: the higher the canopy the greater the wind speed. It 
also contributes to the amount of crown fuel. The fuel available in a tree crown is often 
estimated from tree height. It affects the lofting of embers from a torching tree (Albini, 1976), 
that is, an ember from a taller tree will travel further than one lofted from a shorter tree. 
 
2.2.3. Crown base height 
Crown base height (CBH) is defined as the vertical distance between the ground and the base 
of the live crown. Finney (2004) reports that dead branches, shrubs or small trees connecting 
the surface fuels to the crown fuels, may effectively reduce the nominal CBH value (Figure 
9). It determines the threshold for transition from a surface fire to a crown fire. 
 

 
Figure 9. Tree metrics: tree height, crown diameter and crown base height. 
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2.2.4. Crown bulk density 
Crown bulk density (CBD) is the amount of fuel per unit volume of forest canopy. Different 
species have different CBD depending on branching and foliage characteristics (Chuvieco et 
al., 2003). The overall bulk density of the forest depends on plant species and CC. 
 
2.3. Classification schemes 
 
Fuel properties are complex and the combination of vegetation species is almost infinite. It 
would be tedious to inventory all fuel properties every time it is necessary to predict an event 
or make a management decision. Fuel beds are also structurally complex: fire behavior, 
hazard and effects vary widely as a function of their physical attributes. Fuel bed 
characteristics result from the expression of ecological processes, natural disturbances, and 
human manipulation, thus they are difficult to model. Mapping fuel requires consistent, 
scientific, orderly classification methods as well as fuel bed properties inferring methods 
(Sandberg et al., 2001). Fire managers defined different classes of fuel types (FT) 
corresponding to “an identifiable association of fuel elements of distinctive species, form, 
size, arrangement, and continuity that will exhibit characteristics fire behavior under defined 
burning conditions” (Merril and Alexander, 1987). In practice, fuel stratification is difficult to 
handle so it is often accomplished by identification of FT, i.e., forest stands where similar 
association of fuel properties are expected. The most common fuel type classification systems 
(FTCS) have been developed in the USA and Canada. Usually, they are supported by a photo 
guide which facilitates field reconnaissance of vegetation types and percentage cover (Figure 
10). 
 

 

Figure 10. Photo guide: fuel models 8 (upper left), 10 (upper right), and 7 (bottom) (Anderson, 1982). 
 
To characterize the North American forests, Anderson (1982) developed a FTCS that is 
applicable to a wide range of vegetation types. Recent systems propose to better describe 
national or regional forest reality. For instance, Table 2 presents the system dedicated to 
central Portugal (ADAI, 2000). And FTCS like Prometheus better suit Mediterranean 
ecosystems (Figure 11). 
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Table 2. Fuel types identified in the central region of Portugal (ADAI, 2000). 
 

 

Figure 11. Prometheus fuel type classification system (Riaño et al., 2002). 
 
The most complete fuel stratification was published by Sandberg et al. (2001) who assigned 
fuel characteristics to several combinations of categories of cover types and stand structures.  
Figure 12 shows the fuel layers and categories considered in this FTCS. It distinguishes six 
strata or fuel beds, each characterized by the presence of certain FT. This system aims to be 
more dynamic than the classical FTCS and helps to standardize the way FT are established, 
which opens new possibilities for non-specialists. Here, the different FT can be friendly 
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customized by the user who chooses the type of vegetation and the percentage cover in each 
stratum. According to these authors, it “simplifies the complexity to a reasonable degree, but 
does not oversimplify the description of wildland fuel beds”. 
 

 

Figure 12. Fuel bed strata and categories (Sandberg et al., 2001). 
      
2.4. Fuel models  
 
By itself, information about the spatial distribution of vegetation is not sufficient to 
characterize fire behavior. Quantification of all relevant fuel properties is required: canopy 
height, canopy base height, percentage cover, fuel load, surface-to-volume ratio… Within a 
fuel type, the aerial and surface fuels are estimated by different approaches. To calculate 
crown fuel properties, all trees within a stand are first identified. Second, their individual size 
or the mean size of several specimens is measured (height, DBH, crown diameter...). Then 
published allometric equations allow the calculation of crow fuels. 
 
Such an approach cannot be used to map surface fuels. To quantify them, Fuel Model (FM) 
have been designed. They aim at estimating the expected surface fuel loads under specific 
covers. These quantitative parameter sets are determined by sampling each FT: such 
procedures involve fuel description at the particle or element level (leaf, spine, branch, 
stem…), physical (length, width, volume, mass-to-volume ratio, surface-to-volume ratio…) 
and chemical (moisture, heat content…) characteristics that are assessed by different 
techniques (Allgower et al., 2004). Cohen et al. (2003) reviewed fuel properties for all species 
studied in the Mediterranean Basin. This work that is integrated in the Fire Star project 
(http://www.eufirestar.org/) aims to record information about the FT of the usual 
Mediterranean vegetation covers (Figure 13). The most classical FM were designed by Albini 
(1976) who defined 13 FM providing standardized FT properties and by Anderson (1982) 
who sampled the North-American environment into 13 FM. Table 3 displays the FM 
dedicated to Central Portugal for each FT listed in Table 2. 
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Figure 13. Input GUI of the Wildland fuel particles characterization database structure (Cohen et al., 
2003). 

 

 

Table 3. FM for Central Portugal (ADAI, 2000). 
 
A forest typology was developed for the Portuguese National Forest Inventory (NFI) and 
translated into FM (Table 4): it combines the cover type of the dominant overstory species and 
the forest structure (closed/open, low/tall). The wind adjustment factor (WAF) is another 
parameter that is crucial to determine whether open and low stand fuels are drier or not when 
exposed to the wind, and how the plant canopy modifies the wind acting on a surface fire. 
That kind of approach, where more significance is given to the horizontal and vertical spatial 
continuity, can be important because it has an effect on the environmental thresholds (fuel 
load, fuel moisture, wind speed), allowing horizontal and vertical fire development or spread 
in a given vegetation type. 
 
To describe fuel properties, a new trend consists in merging data from different sources. The 
second-generation FTCS of Sandberg et al. (2001) that calculates fuel properties at different 
scales is now operational. A FT prototype is first selected (Figure 12). Second, the gradient 
and physiognomic variables are adjusted using local data found in the literature or in 
databases (Figure 13). 
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Table 4. Fuel model parameters for the 19 Portuguese forest types. CL: closed and low stands, CT: 
closed and tall stands, OL: open and low stands OT: open and tall stands, SVR: surface-to-volume ratio, 
HC: heat content, Mx: dead fuel moisture of extinction, WAF: wind adjustment factor (Fernandes et al., 

2006). 
 
2.5. Fire models 
 
Fuel characterization and fire models grew in parallel and were mainly developed by the 
American, Canadian, and Australian scientific communities. The concept of fire model was 
actually developed in the USA to accommodate the detailed and complex fuel inputs required 
to simulate surface fire spread using the so-called Rothermel model. Embedded in a variety of 
fire behavior modeling systems, these equations became very popular and a quasi-standard 
model in the wildland fire behavior research. The input variables are listed in Table 5. Three 
other input variables are also required in the Rothermel model: fuel moisture, topography, and 
wind. 

Particle properties 

Particle classes Fuel load [kg/m²] Surface-to-volume[m²/m³] 

0.0 < 0.6 cm measured/estimated measured/estimated 

0.6 < 2.5 cm measured/estimated constant Dead 

2.5 < 7.6 cm measured/estimated constant 

Herbs measured/estimated constant 
Live 

Woody measured/estimated constant 

Fuel bed properties 

Depth [m] measured/estimated 

Moisture of extinction [%] measured/estimated 

Particle density [Kg/m³] constant 

Total mineral content [%] constant 

Effective mineral content [%] constant 

Heat content [Kj/kg] constant 

 

Table 5. Fuel inputs in Rothermel (1972) fire spread equation. 
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FARSITE (Fire Area Simulator) is a fire behavior and growth simulator (Finney, 2004) that 
uses spatial information on topography and fuels along with weather and wind files. It 
incorporates the existing models of surface fire (Rothermel, l972), crown fire (Van Wagner, 
1977; Rothermel, 1991; Van Wagner, 1993), spotting (Albini, 1976), post-frontal combustion, 
and fire acceleration, into a two-dimensional fire growth model. Inputs are required in a raster 
format (Table 6) and the simulation outputs can be either in a vector or raster format (Figure 
14). Since FARSITE uses the Rothermel equation, the input variables required to simulate 
surface fires are already known. For the simulation of crown fires, the quantification of the 
crown fuel properties is also needed. 
 

 

Table 6. FARSITE inputs (Finney, 2004). 
 

 

Figure 14. Output FARSITE software. 
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NEXUS, another crown fire hazard analysis software, uses the Van Wagner (1993) crown fire 
transition criteria to link surface fire behavior models with crown fire behavior models and to 
compute a crown fire potential index (Scott, 1999). CBD and CC determine the likelihood of 
active crowning, and CBH determines the risk that a surface fire is transformed into a crown 
fire. 
 
To fit the requirements of several users and specialists, a flexible and customized system 
called BehavePlus was designed by Andrews et al. (2005). It can be used for several 
applications like the projection of an outgoing fire, the planning of prescribed fires, and 
training. Primary modeling capabilities include surface and crown fire spread and intensity, 
safety zone size, size of a point source fire, fire containment, spotting distance, crown scorch 
height, tree mortality, wind adjustment factors, and probability of ignition. BehavePlus 
provides the 13 standard fire behavior FM of Anderson. Because they may have different 
requirements, users can introduce their own parameters to build and save a FM closer to 
reality (Figure 15). Thus, the BehavePlus software allows customization, offering several 
options for inputs and outputs (graphical or GIS based, dynamics, vector and raster) and 
independent models for several calculations (wind adjustment factor, dead fuel moisture 
contents…). The software and its documentation can be downloaded at http://www.fire.org/. 
 

 

Figure 15. Main GUI of BehavePlus software. 
 
3. Airborne LiDAR systems – Review of applications in forests 
 
3.1. Basic principles 
 
Airborne LiDAR systems provide information on the three-dimensional position of any spot 
at the Earth’s surface by measuring the return time of laser pulses. They require accurate 
information on the location and altitude of the platform, which are provided by combining 
differential GPS and INS measurements (Figure 16). 
 
A large number of airborne systems are available both for commercial and scientific use. A 
review of all available systems, as well as the basic relations and formulas, can be found in 
Baltsavias (1999). Airborne laser altimetry provides reliable elevation data with high 
altimetric (< 0.15 cm) and good planimetric (< 0.40 cm) accuracy (Ahokas et al., 2003). 
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Figure 16. Airborne LiDAR systems (http://www.fs.fed.us/pnw/olympia/silv/lidar/). 
 
For continental surface altimetry, the laser operates in the near-infrared region of the spectum 
(1064 nm) to maximize the return signal and minimize the background noise. LiDAR systems 
can be classified on the basis of i) the footprint size (small from 0.2 to 0.8 m or large from 8 
to 70 m); ii ) the sampling rate vs the scanning pattern; and iii ) the digitization sampling 
(multi-echo or full waveform). The footprint size depends on the divergence of the laser beam 
and the altitude of the sensor. 
 
Small footprint systems differ from large ones by the surface area illuminated by the laser 
beam (Figure 17a). They provide high point density, allowing a detailed description of the 
illuminated area. They only sense individual elements or portions of forest elements (e.g., the 
side or the top of a tree crown, a portion of a shrub...) thus individual trees can be sampled. As 
a consequence, they also often miss the tree top and, in forests having high CC, they have 
some difficulty reaching the underlying ground. Derivation of accurate DTM and tree height 
maps consequently highly depends on the sampling rate, i.e., the pulse frequency and the 
footprint size. 
 
Large footprint systems provide information on the forest structure rather than on individual 
trees (Figure 17b). The return waveform records the vertical distribution of intercepted 
surfaces within a wide area. By increasing the footprint, the ground is generally reached, even 
in dense media, avoiding the disadvantages of small footprints. Since the point density 
decreases, the information (crown volume, biomass, etc.) is provided at the stand level and it 
is impossible to describe individual forest elements such as trees. The separation of the 
vertical layers and the estimation of their height are coarser. 
 

a)     b)     

Figure 17. a) Small and b) large footprint laser beam. 
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In forestry, multi-echo and full waveform systems differ in the way they sample the forest 
three-dimensional structure. Multi-echo LiDAR systems record at least the first and last 
returns (Figure 18). Pulse detection is applied on the backscattered signal by an on-line 
system detector that extracts several time-stamped pulses from the continuous waveform, 
which gives the position of the target. 
 

 

Figure 18. Conceptual differences between discrete (left) and full waveform (right) LiDAR systems. The 
middle figure shows the laser illumination area within a forest. 

 
On-line peak methods vary according to the manufacturer who generally does not provide 
information about the implementation of its software. None is believed to be more accurate 
and reliable than another (Wagner et al., 2004). The standard pulse detection methods are: 
threshold, center-of-gravity, amplitude local maxima detection, detection of the zero crossing 
of the second derivate and constant fraction (Mallet and Bretar, 2007). They often take 
trigger-pulses due to noise (Figure 19). 
 

 

Figure 19. Upper: emitted pulse. Middle upper: received signal. Middle bottom: peaks detected by a 
discrete system. Bottom: full digitized  waveform (Wagner et al., 2004). 
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Full waveform systems record the amount of energy returned to the sensor. This enables the 
user to analyze the waveform off-line in post-processing, and thus to use different detection 
methods or combinations of them to extract additional information from the data. This also 
partly solves the detection problem. The processing consists in decomposing the waveform 
into a sum of components, or echoes, with a parametric approach in order to characterize the 
different targets along the path of the laser beam. The aim is therefore to maximize the 
number of relevant peaks detected and to extract more information from the raw signal. The 
backscatter signal is often assumed to be a mixture of Gaussians (Figure 20), however, other 
mathematical functions have been proposed such as the generalized Gaussian function 
(Chauve et al., 2007a ). 
 

 

Figure 20. Waveform data (black solid) and the Gaussian components (red dashed). The vertical line 
symbolizes the position of the point extracted by a multi-echo system. Persson et al. (2005) noticed that 
four points could be extracted in post-processing compared to a discrete system for this particular case. 

 
For the Gaussian model, the amplitude and the width can be obtained (Figure 21). They give 
information on the reflective properties of the target (Mallet and Bretar, 2007). These features 
can be seen as additional parameters for the purpose of classification. For instance, the 
backscatter signal on vegetation is wider than on the ground, but lower in intensity (Persson et 
al., 2005). The waveform registration also improves the vertical resolution (or multi-target 
resolution) of LiDAR systems, i.e. the minimum vertical distance between two targets likely 
to be recognized. In short, pulse peaks separated by about 0.5 m can be detected, which is 
impossible using conventional LiDAR (Hug et al., 2004). 
 

 

Figure 21. Example of measured vs modeled waveform from a forest showing also the amplitude and 
width for a certain pulse (Wagner et al., 2006). 
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3.2. Feature extraction techniques 
 
Extraction of forest information from LiDAR data mainly involves distribution-based 
analyses and individual tree-based analyses. They make scale and accuracy requirement in the 
forestry information compatible with the LiDAR system acquisition mode. In the distribution-
based analysis, the forest variables are assessed from the point cloud through predictive 
models. In the individual tree-based analysis, the neighborhood information of the point cloud 
is used to retrieve canopy biophysical characteristics (crown size, individual tree height, tree 
location…). A third hybrid analysis combines those two. 
 
3.2.1. Distribution-based analysis 
Based on the point cloud distribution at the stand or plot level, this method sets statistical 
relationships between tree characteristics measured in the field and LiDAR data. These 
correlations are often obtained by multiple regression. Both large and small-footprint metrics 
have been used as predictors in regressions or non-parametric models for the estimation of the 
mean tree height, the basal area, the stem number, the volume, the biomass (e.g., Næsset, 
1997a, 1997b; Lefsky et al., 1999; Magnussen et al., 1999; Means et al., 1999; Lim et al., 
2002; Næsset, 2002; Næsset and Økland, 2002; Maltamo et al., 2006b) and crown fuel 
properties (Riaño et al., 2003; Andersen et al., 2005; Peterson, 2005). 
 
In this statistical approach, the distribution, shape, species and height of the trees directly 
impact on the construction of the models, thus local calibration is necessary. Stand delineation 
is another critical factor. Since high correlations are expected, these methods are sensitive to 
the sampling: the selected stands must be as homogeneous as possible. Working at fine scale 
has the advantage that information at coarse scale can be easily derived over a large area by 
simple aggregation of individual tree values or by extrapolation methods. 
 
3.2.2. Individual tree-based analysis 
If dimensional information on individual trees (height, crown size…) is accurately extracted, 
other canopy structure parameters can be derived using regression models or allometric 
equations (Hyyppä et al., 2001; Næsset and Økland, 2002; Persson et al., 2002; Riaño et al., 
2004). These variables are determined with a consistent bias to avoid site-specific calibration 
(Hyyppä et al., 2008), therefore these methods are site independent. When the statistical 
analysis requires many plots or stands to set the regression models, the individual approach 
only involves a limited number of trees, which significantly reduces the cost and time of field 
work. The individual tree-based analysis seems to be a new direction in forest survey based 
on remote sensing and a powerful management tool for individual overstory trees (Brandtberg 
et al., 2003). Because results have been obtained on different experimental sites, a comparison 
of the distribution-based analysis and the individual tree-based analysis is still missing 
(Hyyppä et al., 2008) although a summary of the expected accuracy can be found in Næsset et 
al. (2004). Recent development in computer analysis of high spatial resolution images led to 
the semi-automated production of forest inventories based on individual tree crown 
information (Hyyppä et al., 2008). Extraction of such an information consists in finding the 
tree location and in delineating the full crown (Gougeon and Leckie, 2003). Algorithms 
developed for high and very high resolution aerial imagery can be used with LiDAR data by 
replacing the image by a digital surface model (DSM), a CHM or a normalized point cloud. 
Additionally, it is possible to improve these algorithms by using powerful ranging algorithms 
or knowledge-based approaches. For example, assuming that the tree height is known, the 
crown size can be roughly estimated by allometric equations or field based correlations. 
   

a) Tree location: almost all the methods construct the CHM and find local maxima as 
best guests for tree location (Gougeon and Moore, 1989). The CHM is determined from the 
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first laser reflection and locally interpolated with special gridding methods. The interpolation 
of raw data to construct the CHM has a smoothing effect and, to some extent, it affects the 
success in finding tree tops (Reitberger et al., 2007). The sampling technique can fail in 
finding all trees in a forest: the number, position or height of tree tops are often erroneous. 
This misclassification occurs when some points are mistakenly assigned tree tops or when 
neighboring trees do not appear as two maxima (Figure 22). Since the local maxima method 
lacks accuracy, others approaches have been proposed. Reitberger et al. (2007) developed an 
algorithm that directly detects the stem position but that requires high density point clouds 
and high penetration rates through the canopy. Progress in similar techniques may increase the 
accuracy of tree location. 

 

 

Figure 22. Trees erroneously retrieved through LiDAR data sample. a) Trees heights � and � are 
correct because LiDAR returns intercept tree peaks (yellow). Tree height � is incorrect because the 

LiDAR return is from the side of the crown (blue). b) Tree is counted as two stems (and heights) due to a 
forked or irregular tree crown (Zimble et al., 2003). 

 
b) Full crown delineation: crowns metrics are useful to accurately derive other tree 

and stand parameters. They are often used in allometric equations or in statistical analysis to 
estimate the biomass or the CBD. The full crown delineation can be divided in three major 
steps: i) the 2D crown delineation (projected maxima area); ii ) the measurement of the crown 
length; iii ) the modeling of the 3D crown shape or, at least, the assignment of its 
characteristics to a geometric object (cone, cylinder…). Two-dimensional crown segmentation 
usually involves a CHM and image processing techniques (Figure 23) such as the valley-
following approach, the edge contour finding at multiple scales, the template matching, or the 
region growing (Persson et al., 2002; Brandtberg et al., 2003; Leckie et al., 2003; Popescu et 
al., 2003; Tiede et al., 2006). 
 

 

Figure 23. Crown delineation superimposed on near-infrared image (Persson et al., 2002). 
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CBH, a critical variable to define crown length, is discussed in section 4.3.2. In order to 
model tree crowns, Andersen et al. (2002) proposed to fit the point cloud by ellipsoidal 
models (Figure 24) and Korpela et al. (2007) adjusted it to a parametric surface determined 
using both the processed LiDAR data and allometric equations. 
 

 

Figure 24. Three-dimensional perspective view of three location and crown dimensions superimposed on 
LiDAR (Andersen et al., 2002). 

 
3.2.3. Hybrid analysis 
Individual tree analysis can be used directly to predict information at the stand level. A series 
of plot or stand-level statistics (number of trees, maximum and mean tree height, mean crown 
size…) are first derived using the individual tree isolation approach. These statistical 
properties are then used to predict canopy structure at the plot or stand level (Holmgren, 2003; 
Popescu et al., 2003; Maltamo et al., 2004). Therefore, the method may improve the 
prediction accuracy of forest structural information but it cannot reduce the field work since 
the ground-truth is still needed. Hyyppä et al. (2008) reviewed the advantages and 
disadvantages of the distribution-based and individual tree-based analyses (Table 7). 
 

Methods Advantages Disadvantages 
Distribution-based 
methods 

- Easy to integrate with present forest 
inventory practices due to common 
reference plots 
- Strong statistical approach 
- Laser scanning data relatively 
inexpensive 

- Requires extensive, accurate, 
representative and expensive reference 
data 
- Without a large amount of reference 
data, strong possibility of large errors 
in operational inventories 

Individual tree-based 
methods 

- Good physical correspondence 
(existing models) with volume 
estimation 
- Low amount of reference data needed 
for calibration 
- Allows precision forestry and 
increased amount of information on the 
forest areas 

- More expensive data 
- More complex system to implement 

Table 7. Distribution-based and individual tree-based analyses (Hyyppä et al., 2008). 
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3.3. Synergy between LiDAR and aerial imagery 
 
The synergy between laser scanning data and high-resolution optical imagery, whether they 
are acquired simultaneously or separately, should improve extraction of forest information. 
On one hand, LiDAR data contribute to the retrieval of height and crown shape, which are 
missing in non-stereo optical imagery. On the other hand, optical images provide information 
about spatial geometry and color, which are useful to vegetation species classification and 
health state diagnosis (Hyyppä et al., 2008). The need for data fusion has been reported by 
several authors (e.g., Baltsavias, 1999; Leckie et al., 2003). A strong criticism against LiDAR 
data is that they are not homogeneously distributed, i.e., there are gaps between two 
acquisitions especially when using small footprint LiDAR. Thus, crown 2D delimitation is 
more accurate in aerial images, in particular when crowns overlap (Leckie et al., 2003). In this 
case, more weight should be put in the optical data. However, they often treat low vegetation 
in canopy gaps as crown vegetation, when LiDAR data could easily remove that type of 
errors. Crown delineation is well established in boreal or managed forests, but over 
unstructured forests like in the Mediterranean countries, more research is needed (Hyyppä et 
al., 2008). Data fusion could also contribute to improve species identification. Persson et al. 
(2005) classified the Scandinavian forest: Norway spruce (Picea abies), Scot spine (Pinus 
sylvester), and deciduous trees. They combined LiDAR-derived metrics and optical spectral 
features, claiming a substantial improvement. Species identification can be very useful in the 
setting of allometric equations (Popescu et al., 2003; Korpela et al., 2007). For instance, 
Popescu et al. (2003) retrieved single tree crown diameters over the CHM by applying a 
filtering technique where the initial values were estimated using allometric equations. Those 
can be also very useful to detect erroneous segmentation. The coupling of optical imagery and 
LiDAR data could help to measure low vegetation because the latter often introduce a 
misclassification between ground and non-ground points. Riaño et al. (2007) calculated the 
NDVI (Normalized Difference Vegetation Index) on aerial images to detect vegetation and 
then decreased this misclassification. Fusion may also help to extrapolate forest spatial 
variables when LiDAR data are not available (Dubayah et al., 2000). In this case, however, a 
radiometric calibration is required. The correct horizontal and vertical segmentation of a 
forest obviously remains a challenge but data fusion seems to be very promising. Other 
methods can be found in Persson et al. (2004), Hyyppä et al. (2005), Suarez et al. (2005) and 
Maltamo et al. (2006b). 
 
3.4. Tree species classification using LiDAR data 
 
Tree species identification is particularly interesting in forest study, inventory and 
management. The spectral information contained in airborne or high-resolution spaceborne 
multi-spectral images generally provides good results (Brandtberg and Walter, 1998). 
Airborne laser scanning data have been also tested to classify tree species. One considers 
three steps: i) delineation of individual tree crowns by segmentation of the CHM and/or 
optical imagery; ii ) extraction of individual tree characteristics (tree height, crown diameter 
and shape…); iii ) classification of tree species based on the extracted features using an 
appropriate classifier. Holmgren and Persson (2004) tested species classification (Scots pine 
and Norway spruce) using an individual tree crown approach. They fitted a parabolic surface 
to the laser point cloud and could classify plant species by their crown shape with an accuracy 
of about 95%. Brandtberg et al. (2003) used LiDAR data under leaf-off conditions to segment 
individual trees. Classification of deciduous species with different indexes suggests a 
moderate to high degree of accuracy. Persson et al. (2006) identified species combining the 
tree features extracted from both high-resolution laser data and high-resolution multi-spectral 
images. 
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4. The Role of LiDAR in fuel mapping 
 

Fuel properties influencing fire behavior are assessed at different scales. If fire scientists are 
interested by the particle level, fire managers prefer large scale maps. Knowledge about the 
vertical structure is critical to estimate fuel properties in forest environments. Passive remote 
sensing does not allow to penetrate deeply into plant canopies. This implies poor DTM 
retrieval over vegetated areas and consequently poor plant height estimation. LiDAR systems 
better deal with multi-layered forest reality. They often reach the ground, even in dense 
forests, and the backscatter signal is a function of the canopy structure. We identified two 
approaches to map fuels using LiDAR data: direct and indirect methods. The first ones intend 
to determine fuel properties directly from the point cloud. The second ones pretend to classify 
the forest environment in terms of FT. The disparity between the resolution of the LiDAR and 
the particle size of fine fuels (0 to 6 cm) and their horizontal arrangement on the ground, 
which does not allow its measurement, justify the indirect methods. Thus, direct methods are 
quantitative because they permit the retrieval of fire model input parameters using LiDAR 
metrics, and indirect methods are qualitative because the forest is first classified into pre-
defined FT which can be then assigned to FM (section 2.5). 
 
4.1. Fuel scales 
 
Many people and research organizations are interested in fuel maps. Depending on the needs, 
different methods are available to study and describe fuel characteristics. Most of the time, it 
is very difficult to obtain an information that answer a specific question in a particular 
situation (Allgower et al., 2004). Moreover, fuels can be assessed at multiple scales, from the 
particle level to the landscape level (Table 8). 
 
The physical, chemical and thermal fuel properties are determined at the cell, individual 
particle or element level (leaf, spine, stalk, twig, branch, stem…). Particle properties 
contribute to predict wildland fire intensity and severity. They have consequences on fire 
suppression and, therefore, are required to interpret the results of flammability laboratory 
experiments. Since collecting fuel properties at this level is costly and time consuming, 
databases like the one built by Cohen et al. (2003) are very useful. Moreover, that kind of 
work (section 2.4) helps to standardize fuel collection methods, describing the source, the 
reliability and protocols. The role of LiDAR in fuel mapping starts at the level of an 
individual tree: the different approaches to measure or estimate crown fuel properties have 
been reviewed in section 3.2.2. For instance, foliage biomass is usually achieved using 
allometric equations based on tree metrics. Note that CBD estimation requires prior 
knowledge, like the foliage biomass, at the particle level. At the plot level, even shrub fuel 
properties can be assessed using LiDAR. The description of that kind of surface is 
accomplished by retrieving shrub canopy mean height, percentage cover and, if possible, 
species identification. In a traditional forest inventory, percentage cover is determined 
visually, thus subjectively. Moreover, height measurements are critical since they are often 
heterogeneous. Other levels are however needed to fire management, ecological applications, 
experimental burns, risk maps, etc. There is a long tradition to use optical or radar imagery, 
but they cannot “see” through the canopy and the spatial resolution of radar images was, till 
recently, quite poor. Thus, LiDAR is still the most accurate way to map fuels at the stand 
level. 
 
At the landscape level, the segmentation of forest environment in FT and their assignment in 
FM is the most elegant way to map fuels. However, operating small footprint LiDAR systems 
is still expensive, which limits their application over a large area. Spatialization techniques to 
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retrieve accurate fuel information at the landscape level are therefore necessary. They consist 
in searching correlations between optical images and LiDAR data and to extrapolate them 
where only optical (airborne or spaceborne) data are available. 
 

Fuel scale/level Fire behavior model Acquisition method Intention 

Landscape 
(2D/3D) 

- BehavePlus 
- FARSITE  
- fire line rotation model 

- Satellite images 
- Aerial photos 
- Imaging spectroscopy 

- Fuel type maps 
- Ignition risk models 
- Risk maps 
- Spatial distribution of 
landscape elements 

 

Stand (2D/3D) 

- Behave 
- BehavePlus 
- FARSITE 
- NEXUS 
- Firetec 
- Canadian Model 

- Stand inventory and 
mapping 
- Aerial photos 
- LiDAR 
- Imaging spectrometry 
 

- Input parameters for fire 
behavior models 
- Fuel type 
characterization 
- Experimental burns 

 

Plot (2D/3D) 

- Firestar 2D (x,z) 
- Firetec 3D 
- CFIS 
 

- Stand inventory and 
mapping 
- Aerial photos 
- LiDAR 
- Imaging spectrometry 
 

- Input parameters for fire 
behavior models 
- 3D fuel structures 
- Biophysical parameters 

Individual (3D) 

- Firestar 2D (x,z) - Cube method 
- Field sampling 
- Ground truth 
- Aerial photos 
- LiDAR 

- Input parameters for fire 
behavior models 
- 3D fuel structures 
- Biophysical parameters 

Particle 

- Firestar 2D (x,z) - Cube method 
- Field sampling 

- Input parameters for fire 
behavior models 
- Structural and 
biophysical parameters 

cell 

... - Biochemical analysis - Input parameters for fire 
behavior models 
- Combustion behavior 

Table 8. Fuel scales, fire models, and fuel acquisition models (from Allgower et al., 2004). 
 
4.2. Direct methods – Mapping fuel properties with LiDAR 
 
There are few studies using LiDAR to estimate fuel properties. With small footprint, we only 
identified the work of Riaño et al. (2003), Morsdorf et al. (2004) and Andersen et al. (2005). 
 
4.2.1. Canopy closure 
Vegetation cover is inversely related to the laser pulse penetration rate into the canopy. The 
laser-generated tree closure is the number of tree reflections divided by all reflections (from 
the trees, the understory and the ground). Means et al. (1999) and Riaño et al. (2003) showed 
a good relationship between CC and tree closure using, respectively, full waveform large 
footprint and first and last echo data. CC is well established with LiDAR taking advantage of 
its capacity to penetrate within canopies. It is more difficult to measure canopy cover with 
optical data because of the underlying grass or green shrubs that increase the 
misclassification. However, CC is the fuel property that is most easily determined by remote 
sensing (Chuvieco et al., 2003). 
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4.2.2. Crown base height 
CBH is a fuel property used to estimate surface and crown fires. Although more emphasis has 
been put in the determination of tree height and crown diameter, CBH is a variable retrievable 
using individual tree-based analyses (Hyyppä et al., 2001; Næsset and Økland, 2002; Persson 
et al., 2002; Pyysalo and Hyyppä, 2002; Holmgren and Persson, 2004; Morsdorf et al., 2004; 
Riaño et al., 2004). Popescu and Zhao (2008) recently identified a trend to overestimate CBH, 
which was already noticed by other authors. To increase accuracy, they developed new 
methods such as the multiband height bins (voxel) to characterize the vertical structure of 
individual tree crowns. 
 
Emerging small-footprint full waveform systems are promising to improve individual tree 
crown assessment because they permit extraction of additional points within the crowns. 
Chauve et al. (2007b) noticed an increase of more than 100% in dense canopies. Therefore, 
full waveform LiDAR improved the accuracy (Figure 25) of crown metrics measurements 
(Holmgren and Persson, 2004; Persson et al., 2005; Reitberger et al., 2007).   
 

 

Figure 25. Crown base height defined as the height that corresponds to 0.15% of the total number of 
points per segment (Reitberger et al., 2007). 

 
Despite some improvement in these approaches, CBH is not very useful by itself to fire 
behavior studies. As a fuel property, it is inseparable from the understory vegetation height. It 
means that it makes no sense to define CBH without accurate information on the fuel model 
below the canopy that may effectively reduce the nominal CBH value. Andersen et al. (2005) 
established predictive models between several LiDAR metrics and field inventory at the plot 
level. Riaño et al. (2003) did the same thing at the stand and tree levels with a clustering 
technique based on height percentiles. With large-footprint LiDAR, the estimation of canopy 
base height was performed either by analyzing or modeling the waveform or by regression 
models (Figure 26). 
 
4.2.3. Crown bulk density 
CBD is described as the foliage biomass divided by the crown volume. Therefore, large tree 
branch biomass is not included since it does not have influence on fire behavior. However, the 
laser beams target all material in the canopy, thus CBD cannot be directly assigned to the 
cloud point returned by tree crowns. CBD can be either empirically estimated from LiDAR 
metrics and field measurements or from the foliage biomass and crown volume. Empirical 
methods are common in large footprint data analyses (Drake et al., 2002; Hyde et al., 2005; 
Peterson, 2005). Andersen et al. (2005) estimated CBD by establishing predictive models 
between LiDAR heights and field survey measurements at the stand level in a coniferous 
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forest with Douglas fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla). 
 

 

Figure 26. Gaussian-fitting method used to derive CBH at the stand level from LVIS data. The lowest 
Gaussian above ground (red) is assumed to represent the lowest canopy return (Peterson, 2005). 

 
However, the calculation of the foliage and crown biomass separately, using allometric 
equations, led to better results. Several allometric equations are provided in the literature for 
different species as a function of tree characteristics (Figure 27). Riaño et al. (2004) used 
allometric equations to predict crown and foliage biomass. However, they studied an 
intensively managed homogeneous Scots pine forest where individual crowns were easy to 
segment. No model validation has been carried out in forests with a complex structure 
(Andersen et al., 2005). Popescu (2007) investigated the LiDAR accuracy to derive individual 
tree measurements (height and crown width) and their impact on individual tree components 
biomass estimations (foliage and stem biomass) using allometric equations. Instead of crown 
or foliage biomass, almost all works aim to predict total above ground biomass (Naesset, 
1997b; Means et al., 2000; Hyyppä et al., 2001; Drake et al., 2002). 
 

 

Figure 27. Canopy bulk density allometric equations at the stand level as a function of tree height (Scott 
and Reinhardt, 2001). 

 
4.2.4. Low vegetation cover 
Low vegetation is very important in fire hazard and fire behavior estimation since it dries very 
fast and regrows quickly after a fire, providing most of the new fuels for surface fires. Large 
fires also always start and spread in this layer. Even without upper vegetation, the height of 
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small vegetation – grass, shrubs, small trees – is not easy to retrieve by remote sensing. 
Contrary to optical imagery, LiDAR data can have serious difficulties to detect it and 
misclassification between ground and low vegetation often occurs. This variable is however 
crucial not only for fuel mapping purposes, but also to retrieve accurate DTM. Because the 
height is the primary characteristic of fuel load in this type of vegetation, there are different 
FT where the single difference is the vegetation height. 
 
Naesset and Bjerknes (2001) estimated the mean height of a young forest using a small 
footprint LiDAR (first and last echoes) and found values ranging from 1.5 to 6 m with an 
average of 3.8 m. They compared the ground truth with laser-derived canopy height metrics 
and density. Riaño et al. (2007) subtracted the DSM and the DTM generated by the LiDAR 
data provider: they noticed a high misclassification degree between vegetation and ground in 
plots covered by low shrubs. This effect also occurred in higher but dense shrubs, fixing shrub 
heights unrealistically close to zero. For fuel mapping purposes, they calculated the DTM by 
removing the vegetation signal using airborne imagery and also improved the DSM: canopy 
heights ranged from 0.5 to 1.6 m with an average of 0.8 m. 
 
Surface vegetation height is difficult to assess using large footprint LiDAR because ground 
and low vegetation signal are difficult to separate. Full waveform small footprint LiDAR 
processing methods offer new opportunities to measure low vegetation. They permit 
extraction of additional points within the understory. For instance, Chauve et al. (2007b) 
noticed an increase of more than 100% in this layer. Hug et al. (2004) and Persson et al. 
(2005) suggested to use the pulse width and intensity to detect the presence of low vegetation 
because the pulses reflected by plants tend to be larger than ground hits (Figures 28 and 29). 
 

  

Figure 28. Histogram of width points, ground (black) 
and vegetation (grey) (Persson et al., 2005). 

Figure 29. Width based classification, ground 
(black) and vegetation (yellow) (Persson et 

al., 2005). 
 
Live vegetation is not the only factor influencing the width and intensity of the peaks: terrain 
slope, dead vegetation over the ground, etc. also induce wider peaks and decrease intensity. 
Point cloud segmentation using peak intensity and width is consequently still challenging. 
Such a classification has been performed in urban areas where the response of the different 
targets is easier to recognize. The application to natural environments seems to be a hard task 
since it is poorly stereotyped. However, improvements in vertical resolution introduced by full 
waveform systems can be useful to differentiate low vegetation from the ground (Figure 30). 
The waveform detection allows an accurate determination of the peaks of overlaid pulses 
down to a target separation of about 0.5 m only. 
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Figure 30. Low vegetation and the limits of multi-target resolution (Hug et al., 2004). 
 
4.2.5. Understory canopy height 
The structure and spatial distribution of understory vegetation (percentage cover and height) 
is critical in fire behavior models, but their parameterization is tricky. Besides all the 
problematics developed in section 4.2.4, the understory layer grows vertically underneath the 
overstory layer, increasing the difficulty in separating the two layers. The contribution of 
lower vegetation in the backscatter signal justifies further studies. Some authors maintain that 
LiDAR data need to be corrected from shading effects: it does not only concern the 
understory layer but also lower foliage and branches shaded in the same tree crown. This 
factor can also increase accuracy in CBH estimations. 
 
The main effort has been put in depicting the vertical structure of trees using both large and 
small footprint LiDAR. The extraction of understory vegetation and their specific 
characteristics was poorly studied. Harding et al. (2001) used SLICER large full-waveform 
data to characterize multi-layered forests. They introduced an occlusion factor present in the 
backscatter signal due to the upper canopy and the ground noise. The goal was to retrieve a 
canopy height profile (CHP) that better describes a forest environment vertically (Figure 31). 
They applied an exponential transform to the waveform described in Lefsky et al. (1999). 
Calculation of CHP relies on assumptions about the rate of occlusion of specific canopy 
surfaces. In consequence, it is not applicable to all types of forests. When only discrete 
LiDAR are available, a similar correction must be performed. Riaño et al. (2003) used the 
same transform to retrieve CHP and simulated full waveform from discrete data. With a 
cluster analysis, they segmented the overstory and understory and then calculated the 
understory cover as the ratio of the number of laser beams that hit the understory to the total 
number of ground hits. Maltamo et al. (2006a) first calculated the cumulative proportional 
canopy densities to retrieve CHP and then analyzed whether the height distribution of laser 
hits were multimodal or not: if multimodal, the underlying canopy structure was considered as 
multi-layered. This work was performed to retrieve stands with cut trees. The number and size 
of logged trees were predicted using regression models. 
  
No work was identified that extracts understory characteristics (height, percentage cover) 
using small-footprint full waveform. However, this type of data may increase the accuracy of 
such measurements. First, waveform processing methods appeared as a promising technique 
to detect understory, as noticed in section 4.3.5 (Hug et al., 2004; Persson et al., 2005, Chauve 
et al., 2007b). Second, the processing of large footprint full waveforms showed that its 
decomposition in three main Gaussian components (trees, underlying vegetation and ground) 
was possible. 
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Figure 31. Steps converting a raw SLICER waveform to a CHP:(a) raw waveform a single laser pulse; 
(b) waveform above mean background noise summed and start, peak, and end of the ground return; (c) 
cumulative distributions of canopy closure (solid), assuming that ground reflectance is half that of the 

canopy, and transformation to projected plant area (dashed); and (d) normalized, incremental 
distribution of plant area above the ground (Harding et al., 2001). 

 
4.2.6. Conclusion 
There are few studies of fuel properties estimation. More emphasis has been placed in the 
extraction of forest variables. Most of the approaches only concern the estimation of tree 
characteristics. Despite this effort, fires do not only depend on tree crowns. More attempts are 
needed to improve the vertical segmentation of a forest environment. The height and 
percentage cover of the lower layers, whether an overstory is present or not, are of primary 
importance to predict fuel load. 
 
In low vegetation, two approaches must be accounted for. The first one takes place when the 
laser trip does not find upper vegetation and the other one when aerial vegetation interferes 
with the laser beam. In both cases, small footprint full waveform offers a new perspective not 
yet explored. In the first approach, the main problem is the misclassification between ground 
and non-ground points. New classification techniques should be based on the features that can 
be extracted from the waveform: additional points against multi-echo systems, shape, peak 
width and intensity. The fusion with multi-spectral optical data may also help to identify 
whether the laser beam hits vegetation or not. 
 
This misclassification also occurs when there is aerial vegetation. Moreover, one must take 
into account the influence of the upper vegetation in the backscatter signal. Although large 
footprints have been successfully analysed with exponential transforms, using the same 
technique on full waveform small footprints is still an issue. 
 
4.3. Indirect methods – Fuel type classification 
 
Most effort on classification methods over forest environments emphasized land cover maps 
that aim to identify tree species and their horizontal gradient along the landscape. This task 
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has been successfully performed using passive remote sensing, however its inability to 
penetrate in forest canopy increases the difficulties in fuel mapping. Rather than vegetation 
identification, a fuel map must deal with the horizontal gradient and mainly vertical forest 
structure. The classification through multispectral images can identify certain FT, usually 
those which can be assigned to land cover. For instance, it is possible to estimate some 
vegetation properties to derive fuel properties, such as the total living and dead biomass in 
grassland and shrublands. However, since height is the best predictor of total biomass in 
surface vegetation, these are coarse estimations. The vertical structural component is missing 
in the optical data, thus image classifications often just discriminate vegetation types more 
than fuel attributes. Recognizing the limitation of optical imagery to directly mapping fuels, 
some research works correlated FM with some vegetation characteristics. This approach 
assumes that some biophysical properties can be accurately classified from remotely sensed 
imagery and, after, assigned to fuel characteristics. However, fuels are not always related to 
land cover maps or vegetation characteristics, polygons with the same land cover can have 
more than four FM (Keane et al., 2001). 
  
LiDAR allows three-dimensional measurements of multi-layered forests. Section 4.2 reviews 
the potentials and limits to estimate crown and surface fuels. The measurements of some 
surface fuels properties as those of litter are an unattainable goal. First, the particle size 
influencing fire behavior (0-6 cm) is incompatible with LiDAR spatial resolution. Second, the 
horizontal disposition over the bare soil and the low porosity make it impossible to measure 
their depth or even their presence. 
 
Indirect methods to differentiate FT are classification techniques like those used in optical 
imagery. Since the backscatter signal is a function of the forest structure − describing the 
spatial arrangement − and the metrics of the FT are well established by fuel modelers, one 
expects that LiDAR data be a major factor in the classification of FT. In Figure 32 that 
presents full-waveform amplitudes distributed in space for four different zones, one can 
recognize some patterns that are likely to be assigned to the FT of Figure 33. 
 

  

Figure 32. Waveform samples inserted in a 3D 
volume consisting in small 3D cells (voxels). The 
amplitude of the waveform is assigned to each 

voxel. Upper left: pine trees; upper right: spruce 
trees; bottom left: deciduous trees, bottom right: 

road surrounded by grass and some trees (Persson 
et al., 2005). 

Figure 33.  Prometheus classification fuel types 
system (Riaño et al., 2002). 
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Figure 34 shows the extracted points corresponding to the same waveforms in the upper left 
and bottom left displayed in Figure 32. A similar and complementary analyze could be tried 
here. 
 

  

Figure 34. Extracted points from LiDAR waveform data corresponding to upper left and bottom left of 
Figure 33. 

 
4.4.1. Methodology 
Indirect methods aim to study the correlation between the LiDAR backscatter signal and the 
forest metrics well established in terms of FT. This subject has been poorly studied. Mutlu et 
al. (2008) fusionned LiDAR metrics (discrete system with 2.58 points/m²) with multispectral 
QuickBird imagery to classify FT. They also compared the accuracy of fuel maps 
classification using the imagery alone, the LiDAR alone and the two data together. The 
derived metrics were eleven height bins normalized (number of points per volume unit by 
total number of points) with the same horizontal dimension of images pixel (2.5 m × 2.5m). 
With an average of 2.5 points/m² they had 16 points par cell. The fusion was made with three 
techniques: LiDAR-multispectral stack, principal components analysis and minimum noise 
fraction. They identified seven FM in the study area: models l, 2, 4, 5, 7, 8 and 9 described in 
Table 9. A total of 27 regular polygons, each with a radius of 11 m, were selected. The 
supervised classification was performed using parametric decision rules (through maximum 
likelihood and Mahalanobis distance) in a per pixel characterization of fuels. The accuracies 
retrieved were 76.52% for the QuickBird image alone and 90.10% for the best fusion method. 
Therefore, using LiDAR derived metrics obviously increases the accuracy. 
 

Fuel Model (FM) 

Grass and grass dominated 

FM 1 – Short Grass (0.30 m) Short live and dead grass, grass-tundra, grass-shrub combinations (1/3 brush) 

FM 2 – Timber (grass-understory) Open shrubs lands and pine or scrub oak stands which cover 1/3 to 2/3 of the area 

Chaparral and shrub fields 

FM 4 – Chaparral (1.82 m) Stands of mature shrubs 1.82 m or more, live and dead fine woody material in the crowns of a 
nearly continuous secondary overstory 

FM 5 – Brush (0.60 m) Young and short shrubs, little dead material and grasses, in the understory, light surface fuels loads 

FM 7 – Southern rough Stands of shrubs between 0.60and 1.82 m high, Palmetto-gallberry understory-pine overstory sites, 
occasionally black spruce-shrub combination 

Timber litter 

FM 8 – Closed timber litter Closed canopy stands of short-needle conifers or hardwoods. Needles, leaves, and occasionally 
twigs in the understory 

FM 9 – Hardwood litter Long-needle conifer and hardwood stands, closed stands of long-needle pine like ponderosa, 
Jeffrey, red pines, and southern pine plantations 

Table 9. Description of Anderson (1982) fuel models. 
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Figure 35. (left) FM 8 and (right) FM 10 Seielstad and Queen, 2003). 
 
They conclude that obstacle density is characterized by a unimodal distribution in FM 8 and 
by a multimodal distribution in FM 10 (Figure 36). Therefore, the obstacle density allows to 
differentiate surface roughness. Based on field survey, they suggest other analyzes such as the 
linear relationship between total fuel load and obstacle density. They claim that large logs and 
branches in forest floor dominate the roughness signal even in plots with significant shrubs 
and seedling-sapling components, and that the obstacle density is primarily a function of 
coarse woody debris. However Seielstad and Queen (2003) clipped the ground points by hand 
because their separation from coarse wood on the forest floor was critical. 
   

 

Figure 36. Laser Height Profiles for two plots representative of FM 8 and 10, respectively (Seielstad and 
Queen, 2003). 

 
4.4.3. Conclusion 
The measurement of surface fuel properties is not expected using this approach. We 
emphasized the disparity between the LiDAR resolution and the particle size of fine fuels, 
their horizontal arrangement near the ground, and the poor porosity of litter which do not 
facilitate the separation from the ground. However, these works suggest that it is possible to 
find LiDAR-derived metrics, associated or not with multispectral imagery, to distinguish 
some FT. For instance, surfaces covered by long-needles and short-needles are classified as 
two different FM even if they have similar CH. The litter depth is not retrieved by LiDAR, 
but LiDAR metrics can depict the canopy conditions that are specific for a certain type of FM. 
In brief, LiDAR metrics are better suited to describe the overall forest canopy condition that is 
optimal to feed a FM. This technique is actually similar to field reconnaissance using photo 
guides. Moreover, Seielstad and Queen (2003) suggested that laser-derived estimations of FM 
were more consistent than field reconnaissance. New LiDAR metrics and stoical analyzes 
deserve to be developed to establish robust classification methods. These metrics can be 
achieved by a direct approach (CBH, CBD, biomass, DBH…), canopy height variances 
(Blaschke et al., 2004; Zimble et al., 2003), more consistent ecological and spatial indexes 
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(connectivity, proximity, neighborhood of forest structure…). Among others, one can cite the 
SHEI or the DIVI. The robustness of classification methods can be also increased with 
gradient modeling proceeding from different sources. For example, a north-facing aspect has 
more chance to develop a specific FT than another. 
 
Fuel type classification also deals with segmentation of forest environment into stands. Their 
delimitation can be ambiguous in field reconnaissance or by image interpretation (Naesset, 
2002). The segmentation accuracy increases when using regression models to estimate the 
others forest variables (mean height, stem number, basal area, volume, biomass…). The 
success of this type of analysis is very dependent on the stand delineation. Naesset (2002) 
noticed that the use of digital image and laser data in automated segmentation procedures 
should be considered to take full advantage of the structural properties inherent to laser data. 
 
Conclusion 
 
Fuels have been traditionally mapped by field survey sampling, their spatialization achieved 
by field or imagery reconnaissance. It is therefore a time and cost consuming task. Thus, there 
is a great interest in studying the potential of remote sensing to map fuels. Due to their 
capacity to describe the horizontal and vertical forest structure, LiDAR are the most powerful 
tool to achieve it, specially when other remote sensing techniques are ineffective (e.g., radar, 
optical imagery). For instance, we showed their capacity to directly retrieve fuel properties, 
which is a great improvement in fuel mapping. Large areas can be also processed, reducing 
the time and effort spent in this task. Finally they increased the accuracy compared to field 
measurements that are subjective and not always easy to implement. 
 
Moreover, LiDAR is recognized as the most accurate technology to retrieve the DTM over 
forests, thus providing the other variables used by fire behavior models: elevation, aspect and 
slope. Despite these innovations, LiDAR systems are limited. For instance, the separation of 
ground from low vegetation returns is still difficult. Therefore, DTM extraction is directly 
related to the measurement of low vegetation and vice versa, thus improvement in these two 
layers is a challenge in fire behaviour studies. This is actually more critical in the 
Mediterranean reality. Here, the environment is characterized by shrublands and complex 
forest structures, with understory, therefore more exposed to fire events. However, most of the 
methodologies have been tested over boreal, deciduous and managed forest with little lower 
vegetation. Thus, more emphasis has been given to the tree canopy characterization and it is 
unclear whether these methodologies still work or not in such complex forest structures. 
 
FT classification should be taken into account due to the LiDAR inability to measure some 
fuel properties. New LiDAR metrics and more robust classification methods must be studied 
to increase the accuracy in the whole set of FT existing on the studied area. Another limitation 
of LiDAR data is the poor spatial and temporal cover. Fire management and suppression need 
fuel maps at the landscape level. Moreover, vegetation is a dynamic target. Correlations 
between LiDAR metrics and satellite images (vegetation indexes, texture...) have been poorly 
studied, although they are complementary. On one hand, the limit of passive optical 
measurement to penetrate in the canopy can be plugged by LiDAR data. On the other hand, 
the lack of high spatial and temporal cover of laser technology can be found in satellite 
images. 
 
The dialog with foresters and fire researches should occur more often. It is necessary to have 
better and specific knowledge of their needs, difficulties and limitations. Moreover, to map 
fuels, directly or indirectly, accurate field measurements are needed to validate the results. 
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