Determination of mechanical discontinuities at Merapi summit from kinematic GPS

<u>F. Beauducel</u>¹, M. Agung Nandaka², G. Florsch^{1,3}, J. Ammann¹, P. Mourot², F.-H. Cornet¹, M. Diament¹

¹ Institut de Physique du Globe, Paris

² Volcanological Survey of Indonesia, Yogyakarta

³ École Nationale Supérieure des Arts et Industries, Strasbourg

Plan

- Introduction
- Deformations modeling
- Methodology: rapid static + kinematic
- First results: Dec. 1999 March 2000
- Conclusions & perspectives

Introduction

Eruption: Magnitude? Direction? Rock slope problem: Localization? Volume? Type of source: Magmatic? Phreatic?

Prediction = monitoring + interpretative model

Deformation modeling (1)

Fluid transport (magma, gas, water)

- Numerical models need boundary conditions:
 - Internal substructure geometry
 - Source parameters

Why does a volcano deform?

Deformation modeling (2)

[Beauducel et al., JGR, 2000]

3-D mixed boundary elements method:

- quasi-static elastic
- discontinuities

Merapi since 1993:

- evidence for fractures involvement
- local not elastic behavior

Methodology (1)

Needs for rock slopes monitoring:

- dense geodetic network
- brief field campaigns at summit
- Proposed solution:
 - GPS dual-frequency small receivers
 - Very short baselines (< 500 m)
 - Kinematic / rapid static processing
 - Automatic routines for interpretation

Methodology (2)

Kinematic GPS ~ 50 benchmarks 2-min. measur. $\times n$ < 5 cm precision</pre> Rapid Static GPS 7 benchmarks 15-min. measur. < 1 cm precision</pre> Both 1-s sample rate

Methodology (3)

Trajectories:

- Marks detection
- Positions extraction (3 components + STD)
- Automatic naming for new points

Methodology (4)

Combination:

- Rapid static baselines
- Differential kinematic baselines (from point to point)

Adjustment:

- Geocentric referential
- Least square linear system solving

$\mathbf{A}\mathbf{X} = \mathbf{B} + \mathbf{E}$ $\mathbf{X} = (\mathbf{A}^{\mathrm{T}}\mathbf{V}^{-1}\mathbf{A}^{\mathrm{T}})^{-1} \mathbf{A}^{\mathrm{T}}\mathbf{V}^{-1}\mathbf{B}$												
A =	(1 0 0 	0 1 0 	0 0 1 	- 1 0) - 1)	<i>B</i> =	$\left(\begin{array}{c} X_{ref} \\ Y_{ref} \\ \\ X_{lul} - \\ \\ \end{array}\right)$	- X ₁ - Y ₁ X _{pun}	,	X =	$\left(\begin{array}{c}X_1\\Y_1\\\ldots\\X_{pun}\\\ldots\end{array}\right)$	
				V	$\mathbf{T} = \begin{pmatrix} \sigma_X^2 \\ \cdots \\ \cdots \\ \cdots \\ \cdots \end{pmatrix}$	$ \sigma_{XY} \sigma_{Y}^{2} \\ \sigma_{Y}^{2} \\ \dots \\ \dots $	$ \sigma_{XZ} \\ \sigma_{YZ} \\ \sigma_{Z}^{2} \\ \dots $	···· ·	····) ····)			

- $\mathbf{A} =$ partial derivatives
- $\mathbf{B} = observations$
- $\mathbf{V} = covariance matrix$
- $\mathbf{X} =$ unknowns

First results (1)

First results (2)

Conclusion & perspectives

- Residues after adjustment < 1.5 cm for the entire network and 3 components
- No significant displacement from Dec. 1999 to March 2000
- Field strategy:
 - ≥ 2 trajectories $+ \geq 3$ static baselines
 - Campaigns every 1-2 month (VSI)