Determination of mechanical discontinuities at Merapi summit from kinematic GPS

F. Beauducel ${ }^{1}$, M. Agung Nandaka ${ }^{2}$,
G. Florsch ${ }^{1,3}$, J. Ammann ${ }^{1}$, P. Mourot ${ }^{2}$,
F.-H. Cornet ${ }^{1}$, M. Diament ${ }^{1}$
${ }^{1}$ Institut de Physique du Globe, Paris
${ }^{2}$ Volcanological Survey of Indonesia, Yogyakarta
${ }^{3}$ École Nationale Supérieure des Arts et Industries, Strasbourg

Plan

Introduction

- Deformations modeling
- Methodology: rapid static + kinematic
- First results: Dec. 1999 - March 2000
- Conclusions \& perspectives

Introduction

I Eruption:
I Magnitude?
\| Direction?
Rock slope problem:
$\|$ Localization?
\| Volume?

- Type of source:
\| Magmatic?
\| Phreatic?

Prediction $=$ monitoring + interpretative model

Deformation modeling (1)

- Fluid transport (magma, gas, water)
- Numerical models need boundary conditions:
|| Internal substructure geometry
\| Source parameters

Deformation modeling (2)

|| 3-D mixed boundary elements method:
\| quasi-static elastic
II discontinuities

- Merapi since 1993:
\| evidence for fractures involvement
|| local not elastic behavior
[Beauducel et al., JGR, 2000]

Methodology (1)

I. Needs for rock slopes monitoring:
\| dense geodetic network
|| brief field campaigns at summit

- Proposed solution:
|| GPS dual-frequency small receivers
\| Very short baselines (< 500 m)
\| Kinematic / rapid static processing
|| Automatic routines for interpretation

Methodology (2)

- Kinematic GPS
\| ~ 50 benchmarks
|l 2 -min. measur. $\times n$
$\|<5 \mathrm{~cm}$ precision
- Rapid Static GPS
\| 7 benchmarks
|l 15 -min. measur.

$\|<1 \mathrm{~cm}$ precision
- Both 1-s sample rate

Methodology (3)

- Trajectories:
|| Marks detection
|l Positions extraction (3 components + STD)
II Automatic naming for new points

Methodology (4)

- Combination:
\| Rapid static baselines
\| Differential kinematic baselines (from point to point)
- Adjustment:
\| Geocentric referential
\| Least square linear system solving

$$
\begin{aligned}
& \mathbf{A X}=\mathbf{B}+\mathbf{E} \\
& \mathbf{X}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{V}^{-1} \mathbf{A}^{\mathrm{T}}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{V}^{-1} \mathbf{B} \\
& B=\left(\begin{array}{c}
X_{r e f}-X_{1} \\
Y_{r e f}-Y_{1} \\
\cdots \\
X_{l u l}-X_{p u n} \\
\cdots
\end{array}\right)
\end{aligned}
$$

A = partial derivatives
B = observations
$\mathbf{V}=$ covariance matrix
$\mathbf{X}=$ unknowns

First results (1)

First results (2)

Conclusion \& perspectives

\| Residues after adjustment $<1.5 \mathrm{~cm}$ for the entire network and 3 components

- No significant displacement from Dec. 1999 to March 2000
- Field strategy:
$\| \geq 2$ trajectories $+\geq 3$ static baselines
\| Campaigns every 1-2 month (VSI)

